Evaluate
15\sqrt{30}-68\sqrt{2}\approx -14.008138616
Share
Copied to clipboard
\sqrt[6]{8}-5\sqrt{18}+15\sqrt{30}-9\sqrt{72}
Calculate 2 to the power of 3 and get 8.
\sqrt[6]{8}=\sqrt[6]{2^{3}}=2^{\frac{3}{6}}=2^{\frac{1}{2}}=\sqrt{2}
Rewrite \sqrt[6]{8} as \sqrt[6]{2^{3}}. Convert from radical to exponential form and cancel out 3 in the exponent. Convert back to radical form.
\sqrt{2}-5\sqrt{18}+15\sqrt{30}-9\sqrt{72}
Insert the obtained value back in the expression.
\sqrt{2}-5\times 3\sqrt{2}+15\sqrt{30}-9\sqrt{72}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\sqrt{2}-15\sqrt{2}+15\sqrt{30}-9\sqrt{72}
Multiply -5 and 3 to get -15.
-14\sqrt{2}+15\sqrt{30}-9\sqrt{72}
Combine \sqrt{2} and -15\sqrt{2} to get -14\sqrt{2}.
-14\sqrt{2}+15\sqrt{30}-9\times 6\sqrt{2}
Factor 72=6^{2}\times 2. Rewrite the square root of the product \sqrt{6^{2}\times 2} as the product of square roots \sqrt{6^{2}}\sqrt{2}. Take the square root of 6^{2}.
-14\sqrt{2}+15\sqrt{30}-54\sqrt{2}
Multiply -9 and 6 to get -54.
-68\sqrt{2}+15\sqrt{30}
Combine -14\sqrt{2} and -54\sqrt{2} to get -68\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}