Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{3}+k\sqrt{2}=\sqrt[3]{9\sqrt{3}-11\sqrt{2}}
Swap sides so that all variable terms are on the left hand side.
k\sqrt{2}=\sqrt[3]{9\sqrt{3}-11\sqrt{2}}-\sqrt{3}
Subtract \sqrt{3} from both sides.
\sqrt{2}k=\sqrt[3]{9\sqrt{3}-11\sqrt{2}}-\sqrt{3}
The equation is in standard form.
\frac{\sqrt{2}k}{\sqrt{2}}=\frac{\sqrt[3]{9\sqrt{3}-11\sqrt{2}}-\sqrt{3}}{\sqrt{2}}
Divide both sides by \sqrt{2}.
k=\frac{\sqrt[3]{9\sqrt{3}-11\sqrt{2}}-\sqrt{3}}{\sqrt{2}}
Dividing by \sqrt{2} undoes the multiplication by \sqrt{2}.
k=\frac{\sqrt{2}\left(\sqrt[3]{9\sqrt{3}-11\sqrt{2}}-\sqrt{3}\right)}{2}
Divide \sqrt[3]{9\sqrt{3}-11\sqrt{2}}-\sqrt{3} by \sqrt{2}.