Evaluate
\text{Indeterminate}
Share
Copied to clipboard
\sqrt[3]{49+5^{2}-47}+\sqrt[4]{\frac{2-\frac{25-4}{7}}{3}\times 2^{3}}
Calculate 7 to the power of 2 and get 49.
\sqrt[3]{49+25-47}+\sqrt[4]{\frac{2-\frac{25-4}{7}}{3}\times 2^{3}}
Calculate 5 to the power of 2 and get 25.
\sqrt[3]{74-47}+\sqrt[4]{\frac{2-\frac{25-4}{7}}{3}\times 2^{3}}
Add 49 and 25 to get 74.
\sqrt[3]{27}+\sqrt[4]{\frac{2-\frac{25-4}{7}}{3}\times 2^{3}}
Subtract 47 from 74 to get 27.
3+\sqrt[4]{\frac{2-\frac{25-4}{7}}{3}\times 2^{3}}
Calculate \sqrt[3]{27} and get 3.
3+\sqrt[4]{\frac{2-\frac{21}{7}}{3}\times 2^{3}}
Subtract 4 from 25 to get 21.
3+\sqrt[4]{\frac{2-3}{3}\times 2^{3}}
Divide 21 by 7 to get 3.
3+\sqrt[4]{\frac{-1}{3}\times 2^{3}}
Subtract 3 from 2 to get -1.
3+\sqrt[4]{-\frac{1}{3}\times 2^{3}}
Fraction \frac{-1}{3} can be rewritten as -\frac{1}{3} by extracting the negative sign.
3+\sqrt[4]{-\frac{1}{3}\times 8}
Calculate 2 to the power of 3 and get 8.
3+\sqrt[4]{-\frac{8}{3}}
Multiply -\frac{1}{3} and 8 to get -\frac{8}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}