\sqrt[ 3 ] { 2 + \frac { 10 } { 27 } } = \frac { \frac { 4 } { 3 } } { 3 } , \sqrt[ 3 ] { 3 \frac { 3 } { 8 } } = \frac { 3 } { 2 }
Verify
false
Share
Copied to clipboard
\sqrt[3]{\frac{64}{27}}=\frac{\frac{4}{3}}{3}\text{ and }\sqrt[3]{\frac{3\times 8+3}{8}}=\frac{3}{2}
Add 2 and \frac{10}{27} to get \frac{64}{27}.
\frac{4}{3}=\frac{\frac{4}{3}}{3}\text{ and }\sqrt[3]{\frac{3\times 8+3}{8}}=\frac{3}{2}
Calculate \sqrt[3]{\frac{64}{27}} and get \frac{4}{3}.
\frac{4}{3}=\frac{4}{3\times 3}\text{ and }\sqrt[3]{\frac{3\times 8+3}{8}}=\frac{3}{2}
Express \frac{\frac{4}{3}}{3} as a single fraction.
\frac{4}{3}=\frac{4}{9}\text{ and }\sqrt[3]{\frac{3\times 8+3}{8}}=\frac{3}{2}
Multiply 3 and 3 to get 9.
\frac{12}{9}=\frac{4}{9}\text{ and }\sqrt[3]{\frac{3\times 8+3}{8}}=\frac{3}{2}
Least common multiple of 3 and 9 is 9. Convert \frac{4}{3} and \frac{4}{9} to fractions with denominator 9.
\text{false}\text{ and }\sqrt[3]{\frac{3\times 8+3}{8}}=\frac{3}{2}
Compare \frac{12}{9} and \frac{4}{9}.
\text{false}\text{ and }\sqrt[3]{\frac{24+3}{8}}=\frac{3}{2}
Multiply 3 and 8 to get 24.
\text{false}\text{ and }\sqrt[3]{\frac{27}{8}}=\frac{3}{2}
Add 24 and 3 to get 27.
\text{false}\text{ and }\frac{3}{2}=\frac{3}{2}
Calculate \sqrt[3]{\frac{27}{8}} and get \frac{3}{2}.
\text{false}\text{ and }\text{true}
Compare \frac{3}{2} and \frac{3}{2}.
\text{false}
The conjunction of \text{false} and \text{true} is \text{false}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}