Evaluate
-2
Factor
-2
Share
Copied to clipboard
\sqrt[3]{0}-\sqrt{\frac{3\times 16+1}{16}}+\sqrt[3]{\left(1-\frac{7}{8}\right)^{2}}-|-\frac{1}{2}|
Multiply 0 and 125 to get 0.
0-\sqrt{\frac{3\times 16+1}{16}}+\sqrt[3]{\left(1-\frac{7}{8}\right)^{2}}-|-\frac{1}{2}|
Calculate \sqrt[3]{0} and get 0.
0-\sqrt{\frac{48+1}{16}}+\sqrt[3]{\left(1-\frac{7}{8}\right)^{2}}-|-\frac{1}{2}|
Multiply 3 and 16 to get 48.
0-\sqrt{\frac{49}{16}}+\sqrt[3]{\left(1-\frac{7}{8}\right)^{2}}-|-\frac{1}{2}|
Add 48 and 1 to get 49.
0-\frac{7}{4}+\sqrt[3]{\left(1-\frac{7}{8}\right)^{2}}-|-\frac{1}{2}|
Rewrite the square root of the division \frac{49}{16} as the division of square roots \frac{\sqrt{49}}{\sqrt{16}}. Take the square root of both numerator and denominator.
-\frac{7}{4}+\sqrt[3]{\left(1-\frac{7}{8}\right)^{2}}-|-\frac{1}{2}|
Subtract \frac{7}{4} from 0 to get -\frac{7}{4}.
-\frac{7}{4}+\sqrt[3]{\left(\frac{1}{8}\right)^{2}}-|-\frac{1}{2}|
Subtract \frac{7}{8} from 1 to get \frac{1}{8}.
-\frac{7}{4}+\sqrt[3]{\frac{1}{64}}-|-\frac{1}{2}|
Calculate \frac{1}{8} to the power of 2 and get \frac{1}{64}.
-\frac{7}{4}+\frac{1}{4}-|-\frac{1}{2}|
Calculate \sqrt[3]{\frac{1}{64}} and get \frac{1}{4}.
-\frac{3}{2}-|-\frac{1}{2}|
Add -\frac{7}{4} and \frac{1}{4} to get -\frac{3}{2}.
-\frac{3}{2}-\frac{1}{2}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{1}{2} is \frac{1}{2}.
-2
Subtract \frac{1}{2} from -\frac{3}{2} to get -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}