Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\sqrt[3]{\frac{8}{9}\left(\frac{2}{3}-1\right)}-\sqrt{\left(-4\right)^{2}}\sqrt{\frac{1}{4}}
Subtract \frac{1}{9} from 1 to get \frac{8}{9}.
\sqrt[3]{\frac{8}{9}\left(-\frac{1}{3}\right)}-\sqrt{\left(-4\right)^{2}}\sqrt{\frac{1}{4}}
Subtract 1 from \frac{2}{3} to get -\frac{1}{3}.
\sqrt[3]{-\frac{8}{27}}-\sqrt{\left(-4\right)^{2}}\sqrt{\frac{1}{4}}
Multiply \frac{8}{9} and -\frac{1}{3} to get -\frac{8}{27}.
-\frac{2}{3}-\sqrt{\left(-4\right)^{2}}\sqrt{\frac{1}{4}}
Calculate \sqrt[3]{-\frac{8}{27}} and get -\frac{2}{3}.
-\frac{2}{3}-\sqrt{16}\sqrt{\frac{1}{4}}
Calculate -4 to the power of 2 and get 16.
-\frac{2}{3}-4\sqrt{\frac{1}{4}}
Calculate the square root of 16 and get 4.
-\frac{2}{3}-4\times \frac{1}{2}
Rewrite the square root of the division \frac{1}{4} as the division of square roots \frac{\sqrt{1}}{\sqrt{4}}. Take the square root of both numerator and denominator.
-\frac{2}{3}-2
Multiply 4 and \frac{1}{2} to get 2.
-\frac{8}{3}
Subtract 2 from -\frac{2}{3} to get -\frac{8}{3}.