Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\sqrt[3]{\frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}}
Multiply both numerator and denominator of \frac{1-i}{1+i} by the complex conjugate of the denominator, 1-i.
\sqrt[3]{\frac{-2i}{2}}
Do the multiplications in \frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
\sqrt[3]{-i}
Divide -2i by 2 to get -i.
i
Calculate \sqrt[3]{-i} and get i.
Re(\sqrt[3]{\frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}})
Multiply both numerator and denominator of \frac{1-i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\sqrt[3]{\frac{-2i}{2}})
Do the multiplications in \frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
Re(\sqrt[3]{-i})
Divide -2i by 2 to get -i.
Re(i)
Calculate \sqrt[3]{-i} and get i.
0
The real part of i is 0.