Evaluate
-\frac{\sqrt[3]{37}\times 10^{\frac{2}{3}}\times 27^{\frac{8}{9}}}{270}\approx -1.072408275
Share
Copied to clipboard
\sqrt[3]{\frac{\frac{5}{3}-\frac{1}{6}}{\sqrt[3]{\frac{3}{4}-1+\frac{1}{8}}\times \frac{10}{\left(\frac{3}{2}\right)^{-2}+\frac{2}{3}}}+\frac{\left(\frac{7}{5}-\frac{3}{5}-\frac{1}{2}\right)\left(1-\frac{5}{6}\right)^{-2}}{\sqrt[3]{-3\left(-\frac{1}{3}\right)^{-2}}\times \frac{2}{3}\times 6}}
Calculate \frac{3}{5} to the power of -1 and get \frac{5}{3}.
\sqrt[3]{\frac{\frac{3}{2}}{\sqrt[3]{\frac{3}{4}-1+\frac{1}{8}}\times \frac{10}{\left(\frac{3}{2}\right)^{-2}+\frac{2}{3}}}+\frac{\left(\frac{7}{5}-\frac{3}{5}-\frac{1}{2}\right)\left(1-\frac{5}{6}\right)^{-2}}{\sqrt[3]{-3\left(-\frac{1}{3}\right)^{-2}}\times \frac{2}{3}\times 6}}
Subtract \frac{1}{6} from \frac{5}{3} to get \frac{3}{2}.
\sqrt[3]{\frac{\frac{3}{2}}{\sqrt[3]{-\frac{1}{4}+\frac{1}{8}}\times \frac{10}{\left(\frac{3}{2}\right)^{-2}+\frac{2}{3}}}+\frac{\left(\frac{7}{5}-\frac{3}{5}-\frac{1}{2}\right)\left(1-\frac{5}{6}\right)^{-2}}{\sqrt[3]{-3\left(-\frac{1}{3}\right)^{-2}}\times \frac{2}{3}\times 6}}
Subtract 1 from \frac{3}{4} to get -\frac{1}{4}.
\sqrt[3]{\frac{\frac{3}{2}}{\sqrt[3]{-\frac{1}{8}}\times \frac{10}{\left(\frac{3}{2}\right)^{-2}+\frac{2}{3}}}+\frac{\left(\frac{7}{5}-\frac{3}{5}-\frac{1}{2}\right)\left(1-\frac{5}{6}\right)^{-2}}{\sqrt[3]{-3\left(-\frac{1}{3}\right)^{-2}}\times \frac{2}{3}\times 6}}
Add -\frac{1}{4} and \frac{1}{8} to get -\frac{1}{8}.
\sqrt[3]{\frac{\frac{3}{2}}{-\frac{1}{2}\times \frac{10}{\left(\frac{3}{2}\right)^{-2}+\frac{2}{3}}}+\frac{\left(\frac{7}{5}-\frac{3}{5}-\frac{1}{2}\right)\left(1-\frac{5}{6}\right)^{-2}}{\sqrt[3]{-3\left(-\frac{1}{3}\right)^{-2}}\times \frac{2}{3}\times 6}}
Calculate \sqrt[3]{-\frac{1}{8}} and get -\frac{1}{2}.
\sqrt[3]{\frac{\frac{3}{2}}{-\frac{1}{2}\times \frac{10}{\frac{4}{9}+\frac{2}{3}}}+\frac{\left(\frac{7}{5}-\frac{3}{5}-\frac{1}{2}\right)\left(1-\frac{5}{6}\right)^{-2}}{\sqrt[3]{-3\left(-\frac{1}{3}\right)^{-2}}\times \frac{2}{3}\times 6}}
Calculate \frac{3}{2} to the power of -2 and get \frac{4}{9}.
\sqrt[3]{\frac{\frac{3}{2}}{-\frac{1}{2}\times \frac{10}{\frac{10}{9}}}+\frac{\left(\frac{7}{5}-\frac{3}{5}-\frac{1}{2}\right)\left(1-\frac{5}{6}\right)^{-2}}{\sqrt[3]{-3\left(-\frac{1}{3}\right)^{-2}}\times \frac{2}{3}\times 6}}
Add \frac{4}{9} and \frac{2}{3} to get \frac{10}{9}.
\sqrt[3]{\frac{\frac{3}{2}}{-\frac{1}{2}\times 10\times \frac{9}{10}}+\frac{\left(\frac{7}{5}-\frac{3}{5}-\frac{1}{2}\right)\left(1-\frac{5}{6}\right)^{-2}}{\sqrt[3]{-3\left(-\frac{1}{3}\right)^{-2}}\times \frac{2}{3}\times 6}}
Divide 10 by \frac{10}{9} by multiplying 10 by the reciprocal of \frac{10}{9}.
\sqrt[3]{\frac{\frac{3}{2}}{-\frac{1}{2}\times 9}+\frac{\left(\frac{7}{5}-\frac{3}{5}-\frac{1}{2}\right)\left(1-\frac{5}{6}\right)^{-2}}{\sqrt[3]{-3\left(-\frac{1}{3}\right)^{-2}}\times \frac{2}{3}\times 6}}
Multiply 10 and \frac{9}{10} to get 9.
\sqrt[3]{\frac{\frac{3}{2}}{-\frac{9}{2}}+\frac{\left(\frac{7}{5}-\frac{3}{5}-\frac{1}{2}\right)\left(1-\frac{5}{6}\right)^{-2}}{\sqrt[3]{-3\left(-\frac{1}{3}\right)^{-2}}\times \frac{2}{3}\times 6}}
Multiply -\frac{1}{2} and 9 to get -\frac{9}{2}.
\sqrt[3]{\frac{3}{2}\left(-\frac{2}{9}\right)+\frac{\left(\frac{7}{5}-\frac{3}{5}-\frac{1}{2}\right)\left(1-\frac{5}{6}\right)^{-2}}{\sqrt[3]{-3\left(-\frac{1}{3}\right)^{-2}}\times \frac{2}{3}\times 6}}
Divide \frac{3}{2} by -\frac{9}{2} by multiplying \frac{3}{2} by the reciprocal of -\frac{9}{2}.
\sqrt[3]{-\frac{1}{3}+\frac{\left(\frac{7}{5}-\frac{3}{5}-\frac{1}{2}\right)\left(1-\frac{5}{6}\right)^{-2}}{\sqrt[3]{-3\left(-\frac{1}{3}\right)^{-2}}\times \frac{2}{3}\times 6}}
Multiply \frac{3}{2} and -\frac{2}{9} to get -\frac{1}{3}.
\sqrt[3]{-\frac{1}{3}+\frac{\left(\frac{4}{5}-\frac{1}{2}\right)\left(1-\frac{5}{6}\right)^{-2}}{\sqrt[3]{-3\left(-\frac{1}{3}\right)^{-2}}\times \frac{2}{3}\times 6}}
Subtract \frac{3}{5} from \frac{7}{5} to get \frac{4}{5}.
\sqrt[3]{-\frac{1}{3}+\frac{\frac{3}{10}\left(1-\frac{5}{6}\right)^{-2}}{\sqrt[3]{-3\left(-\frac{1}{3}\right)^{-2}}\times \frac{2}{3}\times 6}}
Subtract \frac{1}{2} from \frac{4}{5} to get \frac{3}{10}.
\sqrt[3]{-\frac{1}{3}+\frac{\frac{3}{10}\times \left(\frac{1}{6}\right)^{-2}}{\sqrt[3]{-3\left(-\frac{1}{3}\right)^{-2}}\times \frac{2}{3}\times 6}}
Subtract \frac{5}{6} from 1 to get \frac{1}{6}.
\sqrt[3]{-\frac{1}{3}+\frac{\frac{3}{10}\times 36}{\sqrt[3]{-3\left(-\frac{1}{3}\right)^{-2}}\times \frac{2}{3}\times 6}}
Calculate \frac{1}{6} to the power of -2 and get 36.
\sqrt[3]{-\frac{1}{3}+\frac{\frac{54}{5}}{\sqrt[3]{-3\left(-\frac{1}{3}\right)^{-2}}\times \frac{2}{3}\times 6}}
Multiply \frac{3}{10} and 36 to get \frac{54}{5}.
\sqrt[3]{-\frac{1}{3}+\frac{\frac{54}{5}}{\sqrt[3]{-3\times 9}\times \frac{2}{3}\times 6}}
Calculate -\frac{1}{3} to the power of -2 and get 9.
\sqrt[3]{-\frac{1}{3}+\frac{\frac{54}{5}}{\sqrt[3]{-27}\times \frac{2}{3}\times 6}}
Multiply -3 and 9 to get -27.
\sqrt[3]{-\frac{1}{3}+\frac{\frac{54}{5}}{-3\times \frac{2}{3}\times 6}}
Calculate \sqrt[3]{-27} and get -3.
\sqrt[3]{-\frac{1}{3}+\frac{\frac{54}{5}}{-2\times 6}}
Multiply -3 and \frac{2}{3} to get -2.
\sqrt[3]{-\frac{1}{3}+\frac{\frac{54}{5}}{-12}}
Multiply -2 and 6 to get -12.
\sqrt[3]{-\frac{1}{3}+\frac{54}{5\left(-12\right)}}
Express \frac{\frac{54}{5}}{-12} as a single fraction.
\sqrt[3]{-\frac{1}{3}+\frac{54}{-60}}
Multiply 5 and -12 to get -60.
\sqrt[3]{-\frac{1}{3}-\frac{9}{10}}
Reduce the fraction \frac{54}{-60} to lowest terms by extracting and canceling out 6.
\sqrt[3]{-\frac{37}{30}}
Subtract \frac{9}{10} from -\frac{1}{3} to get -\frac{37}{30}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}