Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

-2+\sqrt{6}-\left(\sqrt{2}+\sqrt{\frac{2}{3}}\right)
Calculate \sqrt[3]{-8} and get -2.
-2+\sqrt{6}-\left(\sqrt{2}+\frac{\sqrt{2}}{\sqrt{3}}\right)
Rewrite the square root of the division \sqrt{\frac{2}{3}} as the division of square roots \frac{\sqrt{2}}{\sqrt{3}}.
-2+\sqrt{6}-\left(\sqrt{2}+\frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
-2+\sqrt{6}-\left(\sqrt{2}+\frac{\sqrt{2}\sqrt{3}}{3}\right)
The square of \sqrt{3} is 3.
-2+\sqrt{6}-\left(\sqrt{2}+\frac{\sqrt{6}}{3}\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
-2+\sqrt{6}-\left(\frac{3\sqrt{2}}{3}+\frac{\sqrt{6}}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{2} times \frac{3}{3}.
-2+\sqrt{6}-\frac{3\sqrt{2}+\sqrt{6}}{3}
Since \frac{3\sqrt{2}}{3} and \frac{\sqrt{6}}{3} have the same denominator, add them by adding their numerators.
\frac{3\left(-2+\sqrt{6}\right)}{3}-\frac{3\sqrt{2}+\sqrt{6}}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2+\sqrt{6} times \frac{3}{3}.
\frac{3\left(-2+\sqrt{6}\right)-\left(3\sqrt{2}+\sqrt{6}\right)}{3}
Since \frac{3\left(-2+\sqrt{6}\right)}{3} and \frac{3\sqrt{2}+\sqrt{6}}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{-6+3\sqrt{6}-3\sqrt{2}-\sqrt{6}}{3}
Do the multiplications in 3\left(-2+\sqrt{6}\right)-\left(3\sqrt{2}+\sqrt{6}\right).
\frac{-6+2\sqrt{6}-3\sqrt{2}}{3}
Do the calculations in -6+3\sqrt{6}-3\sqrt{2}-\sqrt{6}.