Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{z}-7\right)^{2}=\left(\sqrt{z-105}\right)^{2}
Square both sides of the equation.
\left(\sqrt{z}\right)^{2}-14\sqrt{z}+49=\left(\sqrt{z-105}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{z}-7\right)^{2}.
z-14\sqrt{z}+49=\left(\sqrt{z-105}\right)^{2}
Calculate \sqrt{z} to the power of 2 and get z.
z-14\sqrt{z}+49=z-105
Calculate \sqrt{z-105} to the power of 2 and get z-105.
z-14\sqrt{z}+49-z=-105
Subtract z from both sides.
-14\sqrt{z}+49=-105
Combine z and -z to get 0.
-14\sqrt{z}=-105-49
Subtract 49 from both sides.
-14\sqrt{z}=-154
Subtract 49 from -105 to get -154.
\sqrt{z}=\frac{-154}{-14}
Divide both sides by -14.
\sqrt{z}=11
Divide -154 by -14 to get 11.
z=121
Square both sides of the equation.
\sqrt{121}-7=\sqrt{121-105}
Substitute 121 for z in the equation \sqrt{z}-7=\sqrt{z-105}.
4=4
Simplify. The value z=121 satisfies the equation.
z=121
Equation \sqrt{z}-7=\sqrt{z-105} has a unique solution.