Solve for y
y = \frac{289}{4} = 72\frac{1}{4} = 72.25
Graph
Share
Copied to clipboard
\sqrt{y}=153-2y
Subtract 2y from both sides of the equation.
\left(\sqrt{y}\right)^{2}=\left(153-2y\right)^{2}
Square both sides of the equation.
y=\left(153-2y\right)^{2}
Calculate \sqrt{y} to the power of 2 and get y.
y=23409-612y+4y^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(153-2y\right)^{2}.
y-23409=-612y+4y^{2}
Subtract 23409 from both sides.
y-23409+612y=4y^{2}
Add 612y to both sides.
613y-23409=4y^{2}
Combine y and 612y to get 613y.
613y-23409-4y^{2}=0
Subtract 4y^{2} from both sides.
-4y^{2}+613y-23409=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-613±\sqrt{613^{2}-4\left(-4\right)\left(-23409\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 613 for b, and -23409 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-613±\sqrt{375769-4\left(-4\right)\left(-23409\right)}}{2\left(-4\right)}
Square 613.
y=\frac{-613±\sqrt{375769+16\left(-23409\right)}}{2\left(-4\right)}
Multiply -4 times -4.
y=\frac{-613±\sqrt{375769-374544}}{2\left(-4\right)}
Multiply 16 times -23409.
y=\frac{-613±\sqrt{1225}}{2\left(-4\right)}
Add 375769 to -374544.
y=\frac{-613±35}{2\left(-4\right)}
Take the square root of 1225.
y=\frac{-613±35}{-8}
Multiply 2 times -4.
y=-\frac{578}{-8}
Now solve the equation y=\frac{-613±35}{-8} when ± is plus. Add -613 to 35.
y=\frac{289}{4}
Reduce the fraction \frac{-578}{-8} to lowest terms by extracting and canceling out 2.
y=-\frac{648}{-8}
Now solve the equation y=\frac{-613±35}{-8} when ± is minus. Subtract 35 from -613.
y=81
Divide -648 by -8.
y=\frac{289}{4} y=81
The equation is now solved.
\sqrt{\frac{289}{4}}+2\times \frac{289}{4}=153
Substitute \frac{289}{4} for y in the equation \sqrt{y}+2y=153.
153=153
Simplify. The value y=\frac{289}{4} satisfies the equation.
\sqrt{81}+2\times 81=153
Substitute 81 for y in the equation \sqrt{y}+2y=153.
171=153
Simplify. The value y=81 does not satisfy the equation.
y=\frac{289}{4}
Equation \sqrt{y}=153-2y has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}