Solve for y
y=1
Graph
Share
Copied to clipboard
\left(\sqrt{y^{2}-4y+5}\right)^{2}=\left(\sqrt{y^{2}+1}\right)^{2}
Square both sides of the equation.
y^{2}-4y+5=\left(\sqrt{y^{2}+1}\right)^{2}
Calculate \sqrt{y^{2}-4y+5} to the power of 2 and get y^{2}-4y+5.
y^{2}-4y+5=y^{2}+1
Calculate \sqrt{y^{2}+1} to the power of 2 and get y^{2}+1.
y^{2}-4y+5-y^{2}=1
Subtract y^{2} from both sides.
-4y+5=1
Combine y^{2} and -y^{2} to get 0.
-4y=1-5
Subtract 5 from both sides.
-4y=-4
Subtract 5 from 1 to get -4.
y=\frac{-4}{-4}
Divide both sides by -4.
y=1
Divide -4 by -4 to get 1.
\sqrt{1^{2}-4+5}=\sqrt{1^{2}+1}
Substitute 1 for y in the equation \sqrt{y^{2}-4y+5}=\sqrt{y^{2}+1}.
2^{\frac{1}{2}}=2^{\frac{1}{2}}
Simplify. The value y=1 satisfies the equation.
y=1
Equation \sqrt{y^{2}-4y+5}=\sqrt{y^{2}+1} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}