Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{y^{2}-4y+5}\right)^{2}=\left(\sqrt{y^{2}+1}\right)^{2}
Square both sides of the equation.
y^{2}-4y+5=\left(\sqrt{y^{2}+1}\right)^{2}
Calculate \sqrt{y^{2}-4y+5} to the power of 2 and get y^{2}-4y+5.
y^{2}-4y+5=y^{2}+1
Calculate \sqrt{y^{2}+1} to the power of 2 and get y^{2}+1.
y^{2}-4y+5-y^{2}=1
Subtract y^{2} from both sides.
-4y+5=1
Combine y^{2} and -y^{2} to get 0.
-4y=1-5
Subtract 5 from both sides.
-4y=-4
Subtract 5 from 1 to get -4.
y=\frac{-4}{-4}
Divide both sides by -4.
y=1
Divide -4 by -4 to get 1.
\sqrt{1^{2}-4+5}=\sqrt{1^{2}+1}
Substitute 1 for y in the equation \sqrt{y^{2}-4y+5}=\sqrt{y^{2}+1}.
2^{\frac{1}{2}}=2^{\frac{1}{2}}
Simplify. The value y=1 satisfies the equation.
y=1
Equation \sqrt{y^{2}-4y+5}=\sqrt{y^{2}+1} has a unique solution.