Solve for y
y = \frac{\sqrt{17} + 1}{2} \approx 2.561552813
Graph
Share
Copied to clipboard
\left(\sqrt{y+4}\right)^{2}=y^{2}
Square both sides of the equation.
y+4=y^{2}
Calculate \sqrt{y+4} to the power of 2 and get y+4.
y+4-y^{2}=0
Subtract y^{2} from both sides.
-y^{2}+y+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\times 4}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 1 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-1±\sqrt{1-4\left(-1\right)\times 4}}{2\left(-1\right)}
Square 1.
y=\frac{-1±\sqrt{1+4\times 4}}{2\left(-1\right)}
Multiply -4 times -1.
y=\frac{-1±\sqrt{1+16}}{2\left(-1\right)}
Multiply 4 times 4.
y=\frac{-1±\sqrt{17}}{2\left(-1\right)}
Add 1 to 16.
y=\frac{-1±\sqrt{17}}{-2}
Multiply 2 times -1.
y=\frac{\sqrt{17}-1}{-2}
Now solve the equation y=\frac{-1±\sqrt{17}}{-2} when ± is plus. Add -1 to \sqrt{17}.
y=\frac{1-\sqrt{17}}{2}
Divide -1+\sqrt{17} by -2.
y=\frac{-\sqrt{17}-1}{-2}
Now solve the equation y=\frac{-1±\sqrt{17}}{-2} when ± is minus. Subtract \sqrt{17} from -1.
y=\frac{\sqrt{17}+1}{2}
Divide -1-\sqrt{17} by -2.
y=\frac{1-\sqrt{17}}{2} y=\frac{\sqrt{17}+1}{2}
The equation is now solved.
\sqrt{\frac{1-\sqrt{17}}{2}+4}=\frac{1-\sqrt{17}}{2}
Substitute \frac{1-\sqrt{17}}{2} for y in the equation \sqrt{y+4}=y.
-\left(\frac{1}{2}-\frac{1}{2}\times 17^{\frac{1}{2}}\right)=\frac{1}{2}-\frac{1}{2}\times 17^{\frac{1}{2}}
Simplify. The value y=\frac{1-\sqrt{17}}{2} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{\frac{\sqrt{17}+1}{2}+4}=\frac{\sqrt{17}+1}{2}
Substitute \frac{\sqrt{17}+1}{2} for y in the equation \sqrt{y+4}=y.
\frac{1}{2}+\frac{1}{2}\times 17^{\frac{1}{2}}=\frac{1}{2}\times 17^{\frac{1}{2}}+\frac{1}{2}
Simplify. The value y=\frac{\sqrt{17}+1}{2} satisfies the equation.
y=\frac{\sqrt{17}+1}{2}
Equation \sqrt{y+4}=y has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}