Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{y+4}\right)^{2}=y^{2}
Square both sides of the equation.
y+4=y^{2}
Calculate \sqrt{y+4} to the power of 2 and get y+4.
y+4-y^{2}=0
Subtract y^{2} from both sides.
-y^{2}+y+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\times 4}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 1 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-1±\sqrt{1-4\left(-1\right)\times 4}}{2\left(-1\right)}
Square 1.
y=\frac{-1±\sqrt{1+4\times 4}}{2\left(-1\right)}
Multiply -4 times -1.
y=\frac{-1±\sqrt{1+16}}{2\left(-1\right)}
Multiply 4 times 4.
y=\frac{-1±\sqrt{17}}{2\left(-1\right)}
Add 1 to 16.
y=\frac{-1±\sqrt{17}}{-2}
Multiply 2 times -1.
y=\frac{\sqrt{17}-1}{-2}
Now solve the equation y=\frac{-1±\sqrt{17}}{-2} when ± is plus. Add -1 to \sqrt{17}.
y=\frac{1-\sqrt{17}}{2}
Divide -1+\sqrt{17} by -2.
y=\frac{-\sqrt{17}-1}{-2}
Now solve the equation y=\frac{-1±\sqrt{17}}{-2} when ± is minus. Subtract \sqrt{17} from -1.
y=\frac{\sqrt{17}+1}{2}
Divide -1-\sqrt{17} by -2.
y=\frac{1-\sqrt{17}}{2} y=\frac{\sqrt{17}+1}{2}
The equation is now solved.
\sqrt{\frac{1-\sqrt{17}}{2}+4}=\frac{1-\sqrt{17}}{2}
Substitute \frac{1-\sqrt{17}}{2} for y in the equation \sqrt{y+4}=y.
-\left(\frac{1}{2}-\frac{1}{2}\times 17^{\frac{1}{2}}\right)=\frac{1}{2}-\frac{1}{2}\times 17^{\frac{1}{2}}
Simplify. The value y=\frac{1-\sqrt{17}}{2} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{\frac{\sqrt{17}+1}{2}+4}=\frac{\sqrt{17}+1}{2}
Substitute \frac{\sqrt{17}+1}{2} for y in the equation \sqrt{y+4}=y.
\frac{1}{2}+\frac{1}{2}\times 17^{\frac{1}{2}}=\frac{1}{2}\times 17^{\frac{1}{2}}+\frac{1}{2}
Simplify. The value y=\frac{\sqrt{17}+1}{2} satisfies the equation.
y=\frac{\sqrt{17}+1}{2}
Equation \sqrt{y+4}=y has a unique solution.