Solve for y
y=3
Graph
Share
Copied to clipboard
\sqrt{y+1}=3-\sqrt{2y-5}
Subtract \sqrt{2y-5} from both sides of the equation.
\left(\sqrt{y+1}\right)^{2}=\left(3-\sqrt{2y-5}\right)^{2}
Square both sides of the equation.
y+1=\left(3-\sqrt{2y-5}\right)^{2}
Calculate \sqrt{y+1} to the power of 2 and get y+1.
y+1=9-6\sqrt{2y-5}+\left(\sqrt{2y-5}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-\sqrt{2y-5}\right)^{2}.
y+1=9-6\sqrt{2y-5}+2y-5
Calculate \sqrt{2y-5} to the power of 2 and get 2y-5.
y+1=4-6\sqrt{2y-5}+2y
Subtract 5 from 9 to get 4.
y+1-\left(4+2y\right)=-6\sqrt{2y-5}
Subtract 4+2y from both sides of the equation.
y+1-4-2y=-6\sqrt{2y-5}
To find the opposite of 4+2y, find the opposite of each term.
y-3-2y=-6\sqrt{2y-5}
Subtract 4 from 1 to get -3.
-y-3=-6\sqrt{2y-5}
Combine y and -2y to get -y.
\left(-y-3\right)^{2}=\left(-6\sqrt{2y-5}\right)^{2}
Square both sides of the equation.
y^{2}+6y+9=\left(-6\sqrt{2y-5}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-y-3\right)^{2}.
y^{2}+6y+9=\left(-6\right)^{2}\left(\sqrt{2y-5}\right)^{2}
Expand \left(-6\sqrt{2y-5}\right)^{2}.
y^{2}+6y+9=36\left(\sqrt{2y-5}\right)^{2}
Calculate -6 to the power of 2 and get 36.
y^{2}+6y+9=36\left(2y-5\right)
Calculate \sqrt{2y-5} to the power of 2 and get 2y-5.
y^{2}+6y+9=72y-180
Use the distributive property to multiply 36 by 2y-5.
y^{2}+6y+9-72y=-180
Subtract 72y from both sides.
y^{2}-66y+9=-180
Combine 6y and -72y to get -66y.
y^{2}-66y+9+180=0
Add 180 to both sides.
y^{2}-66y+189=0
Add 9 and 180 to get 189.
a+b=-66 ab=189
To solve the equation, factor y^{2}-66y+189 using formula y^{2}+\left(a+b\right)y+ab=\left(y+a\right)\left(y+b\right). To find a and b, set up a system to be solved.
-1,-189 -3,-63 -7,-27 -9,-21
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 189.
-1-189=-190 -3-63=-66 -7-27=-34 -9-21=-30
Calculate the sum for each pair.
a=-63 b=-3
The solution is the pair that gives sum -66.
\left(y-63\right)\left(y-3\right)
Rewrite factored expression \left(y+a\right)\left(y+b\right) using the obtained values.
y=63 y=3
To find equation solutions, solve y-63=0 and y-3=0.
\sqrt{63+1}+\sqrt{2\times 63-5}=3
Substitute 63 for y in the equation \sqrt{y+1}+\sqrt{2y-5}=3.
19=3
Simplify. The value y=63 does not satisfy the equation.
\sqrt{3+1}+\sqrt{2\times 3-5}=3
Substitute 3 for y in the equation \sqrt{y+1}+\sqrt{2y-5}=3.
3=3
Simplify. The value y=3 satisfies the equation.
y=3
Equation \sqrt{y+1}=-\sqrt{2y-5}+3 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}