Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{x-5}\right)^{2}=\left(\sqrt{3x+7}-4\right)^{2}
Square both sides of the equation.
x-5=\left(\sqrt{3x+7}-4\right)^{2}
Calculate \sqrt{x-5} to the power of 2 and get x-5.
x-5=\left(\sqrt{3x+7}\right)^{2}-8\sqrt{3x+7}+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3x+7}-4\right)^{2}.
x-5=3x+7-8\sqrt{3x+7}+16
Calculate \sqrt{3x+7} to the power of 2 and get 3x+7.
x-5=3x+23-8\sqrt{3x+7}
Add 7 and 16 to get 23.
x-5-\left(3x+23\right)=-8\sqrt{3x+7}
Subtract 3x+23 from both sides of the equation.
x-5-3x-23=-8\sqrt{3x+7}
To find the opposite of 3x+23, find the opposite of each term.
-2x-5-23=-8\sqrt{3x+7}
Combine x and -3x to get -2x.
-2x-28=-8\sqrt{3x+7}
Subtract 23 from -5 to get -28.
\left(-2x-28\right)^{2}=\left(-8\sqrt{3x+7}\right)^{2}
Square both sides of the equation.
4x^{2}+112x+784=\left(-8\sqrt{3x+7}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-2x-28\right)^{2}.
4x^{2}+112x+784=\left(-8\right)^{2}\left(\sqrt{3x+7}\right)^{2}
Expand \left(-8\sqrt{3x+7}\right)^{2}.
4x^{2}+112x+784=64\left(\sqrt{3x+7}\right)^{2}
Calculate -8 to the power of 2 and get 64.
4x^{2}+112x+784=64\left(3x+7\right)
Calculate \sqrt{3x+7} to the power of 2 and get 3x+7.
4x^{2}+112x+784=192x+448
Use the distributive property to multiply 64 by 3x+7.
4x^{2}+112x+784-192x=448
Subtract 192x from both sides.
4x^{2}-80x+784=448
Combine 112x and -192x to get -80x.
4x^{2}-80x+784-448=0
Subtract 448 from both sides.
4x^{2}-80x+336=0
Subtract 448 from 784 to get 336.
x=\frac{-\left(-80\right)±\sqrt{\left(-80\right)^{2}-4\times 4\times 336}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -80 for b, and 336 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-80\right)±\sqrt{6400-4\times 4\times 336}}{2\times 4}
Square -80.
x=\frac{-\left(-80\right)±\sqrt{6400-16\times 336}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-80\right)±\sqrt{6400-5376}}{2\times 4}
Multiply -16 times 336.
x=\frac{-\left(-80\right)±\sqrt{1024}}{2\times 4}
Add 6400 to -5376.
x=\frac{-\left(-80\right)±32}{2\times 4}
Take the square root of 1024.
x=\frac{80±32}{2\times 4}
The opposite of -80 is 80.
x=\frac{80±32}{8}
Multiply 2 times 4.
x=\frac{112}{8}
Now solve the equation x=\frac{80±32}{8} when ± is plus. Add 80 to 32.
x=14
Divide 112 by 8.
x=\frac{48}{8}
Now solve the equation x=\frac{80±32}{8} when ± is minus. Subtract 32 from 80.
x=6
Divide 48 by 8.
x=14 x=6
The equation is now solved.
\sqrt{14-5}=\sqrt{3\times 14+7}-4
Substitute 14 for x in the equation \sqrt{x-5}=\sqrt{3x+7}-4.
3=3
Simplify. The value x=14 satisfies the equation.
\sqrt{6-5}=\sqrt{3\times 6+7}-4
Substitute 6 for x in the equation \sqrt{x-5}=\sqrt{3x+7}-4.
1=1
Simplify. The value x=6 satisfies the equation.
x=14 x=6
List all solutions of \sqrt{x-5}=\sqrt{3x+7}-4.