Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{x-4}=\sqrt{11}-\sqrt{x+5}
Subtract \sqrt{x+5} from both sides of the equation.
\left(\sqrt{x-4}\right)^{2}=\left(\sqrt{11}-\sqrt{x+5}\right)^{2}
Square both sides of the equation.
x-4=\left(\sqrt{11}-\sqrt{x+5}\right)^{2}
Calculate \sqrt{x-4} to the power of 2 and get x-4.
x-4=\left(\sqrt{11}\right)^{2}-2\sqrt{11}\sqrt{x+5}+\left(\sqrt{x+5}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{11}-\sqrt{x+5}\right)^{2}.
x-4=11-2\sqrt{11}\sqrt{x+5}+\left(\sqrt{x+5}\right)^{2}
The square of \sqrt{11} is 11.
x-4=11-2\sqrt{11}\sqrt{x+5}+x+5
Calculate \sqrt{x+5} to the power of 2 and get x+5.
x-4=16-2\sqrt{11}\sqrt{x+5}+x
Add 11 and 5 to get 16.
x-4+2\sqrt{11}\sqrt{x+5}=16+x
Add 2\sqrt{11}\sqrt{x+5} to both sides.
x-4+2\sqrt{11}\sqrt{x+5}-x=16
Subtract x from both sides.
-4+2\sqrt{11}\sqrt{x+5}=16
Combine x and -x to get 0.
2\sqrt{11}\sqrt{x+5}=16+4
Add 4 to both sides.
2\sqrt{11}\sqrt{x+5}=20
Add 16 and 4 to get 20.
\frac{2\sqrt{11}\sqrt{x+5}}{2\sqrt{11}}=\frac{20}{2\sqrt{11}}
Divide both sides by 2\sqrt{11}.
\sqrt{x+5}=\frac{20}{2\sqrt{11}}
Dividing by 2\sqrt{11} undoes the multiplication by 2\sqrt{11}.
\sqrt{x+5}=\frac{10\sqrt{11}}{11}
Divide 20 by 2\sqrt{11}.
x+5=\frac{100}{11}
Square both sides of the equation.
x+5-5=\frac{100}{11}-5
Subtract 5 from both sides of the equation.
x=\frac{100}{11}-5
Subtracting 5 from itself leaves 0.
x=\frac{45}{11}
Subtract 5 from \frac{100}{11}.
\sqrt{\frac{45}{11}-4}+\sqrt{\frac{45}{11}+5}=\sqrt{11}
Substitute \frac{45}{11} for x in the equation \sqrt{x-4}+\sqrt{x+5}=\sqrt{11}.
11^{\frac{1}{2}}=11^{\frac{1}{2}}
Simplify. The value x=\frac{45}{11} satisfies the equation.
x=\frac{45}{11}
Equation \sqrt{x-4}=-\sqrt{x+5}+\sqrt{11} has a unique solution.