Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{x-2}\right)^{2}=\left(3x\right)^{2}
Square both sides of the equation.
x-2=\left(3x\right)^{2}
Calculate \sqrt{x-2} to the power of 2 and get x-2.
x-2=3^{2}x^{2}
Expand \left(3x\right)^{2}.
x-2=9x^{2}
Calculate 3 to the power of 2 and get 9.
x-2-9x^{2}=0
Subtract 9x^{2} from both sides.
-9x^{2}+x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\left(-9\right)\left(-2\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 1 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-9\right)\left(-2\right)}}{2\left(-9\right)}
Square 1.
x=\frac{-1±\sqrt{1+36\left(-2\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-1±\sqrt{1-72}}{2\left(-9\right)}
Multiply 36 times -2.
x=\frac{-1±\sqrt{-71}}{2\left(-9\right)}
Add 1 to -72.
x=\frac{-1±\sqrt{71}i}{2\left(-9\right)}
Take the square root of -71.
x=\frac{-1±\sqrt{71}i}{-18}
Multiply 2 times -9.
x=\frac{-1+\sqrt{71}i}{-18}
Now solve the equation x=\frac{-1±\sqrt{71}i}{-18} when ± is plus. Add -1 to i\sqrt{71}.
x=\frac{-\sqrt{71}i+1}{18}
Divide -1+i\sqrt{71} by -18.
x=\frac{-\sqrt{71}i-1}{-18}
Now solve the equation x=\frac{-1±\sqrt{71}i}{-18} when ± is minus. Subtract i\sqrt{71} from -1.
x=\frac{1+\sqrt{71}i}{18}
Divide -1-i\sqrt{71} by -18.
x=\frac{-\sqrt{71}i+1}{18} x=\frac{1+\sqrt{71}i}{18}
The equation is now solved.
\sqrt{\frac{-\sqrt{71}i+1}{18}-2}=3\times \frac{-\sqrt{71}i+1}{18}
Substitute \frac{-\sqrt{71}i+1}{18} for x in the equation \sqrt{x-2}=3x.
-\left(\frac{1}{6}-\frac{1}{6}i\times 71^{\frac{1}{2}}\right)=-\frac{1}{6}i\times 71^{\frac{1}{2}}+\frac{1}{6}
Simplify. The value x=\frac{-\sqrt{71}i+1}{18} does not satisfy the equation.
\sqrt{\frac{1+\sqrt{71}i}{18}-2}=3\times \frac{1+\sqrt{71}i}{18}
Substitute \frac{1+\sqrt{71}i}{18} for x in the equation \sqrt{x-2}=3x.
\frac{1}{6}+\frac{1}{6}i\times 71^{\frac{1}{2}}=\frac{1}{6}+\frac{1}{6}i\times 71^{\frac{1}{2}}
Simplify. The value x=\frac{1+\sqrt{71}i}{18} satisfies the equation.
x=\frac{1+\sqrt{71}i}{18}
Equation \sqrt{x-2}=3x has a unique solution.