Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{x-2}\right)^{2}=\left(1+\sqrt{x-4}\right)^{2}
Square both sides of the equation.
x-2=\left(1+\sqrt{x-4}\right)^{2}
Calculate \sqrt{x-2} to the power of 2 and get x-2.
x-2=1+2\sqrt{x-4}+\left(\sqrt{x-4}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{x-4}\right)^{2}.
x-2=1+2\sqrt{x-4}+x-4
Calculate \sqrt{x-4} to the power of 2 and get x-4.
x-2=-3+2\sqrt{x-4}+x
Subtract 4 from 1 to get -3.
x-2-2\sqrt{x-4}=-3+x
Subtract 2\sqrt{x-4} from both sides.
x-2-2\sqrt{x-4}-x=-3
Subtract x from both sides.
-2-2\sqrt{x-4}=-3
Combine x and -x to get 0.
-2\sqrt{x-4}=-3+2
Add 2 to both sides.
-2\sqrt{x-4}=-1
Add -3 and 2 to get -1.
\sqrt{x-4}=\frac{-1}{-2}
Divide both sides by -2.
\sqrt{x-4}=\frac{1}{2}
Fraction \frac{-1}{-2} can be simplified to \frac{1}{2} by removing the negative sign from both the numerator and the denominator.
x-4=\frac{1}{4}
Square both sides of the equation.
x-4-\left(-4\right)=\frac{1}{4}-\left(-4\right)
Add 4 to both sides of the equation.
x=\frac{1}{4}-\left(-4\right)
Subtracting -4 from itself leaves 0.
x=\frac{17}{4}
Subtract -4 from \frac{1}{4}.
\sqrt{\frac{17}{4}-2}=1+\sqrt{\frac{17}{4}-4}
Substitute \frac{17}{4} for x in the equation \sqrt{x-2}=1+\sqrt{x-4}.
\frac{3}{2}=\frac{3}{2}
Simplify. The value x=\frac{17}{4} satisfies the equation.
x=\frac{17}{4}
Equation \sqrt{x-2}=\sqrt{x-4}+1 has a unique solution.