Solve for x
x = \frac{17}{4} = 4\frac{1}{4} = 4.25
Graph
Share
Copied to clipboard
\left(\sqrt{x-2}\right)^{2}=\left(1+\sqrt{x-4}\right)^{2}
Square both sides of the equation.
x-2=\left(1+\sqrt{x-4}\right)^{2}
Calculate \sqrt{x-2} to the power of 2 and get x-2.
x-2=1+2\sqrt{x-4}+\left(\sqrt{x-4}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{x-4}\right)^{2}.
x-2=1+2\sqrt{x-4}+x-4
Calculate \sqrt{x-4} to the power of 2 and get x-4.
x-2=-3+2\sqrt{x-4}+x
Subtract 4 from 1 to get -3.
x-2-2\sqrt{x-4}=-3+x
Subtract 2\sqrt{x-4} from both sides.
x-2-2\sqrt{x-4}-x=-3
Subtract x from both sides.
-2-2\sqrt{x-4}=-3
Combine x and -x to get 0.
-2\sqrt{x-4}=-3+2
Add 2 to both sides.
-2\sqrt{x-4}=-1
Add -3 and 2 to get -1.
\sqrt{x-4}=\frac{-1}{-2}
Divide both sides by -2.
\sqrt{x-4}=\frac{1}{2}
Fraction \frac{-1}{-2} can be simplified to \frac{1}{2} by removing the negative sign from both the numerator and the denominator.
x-4=\frac{1}{4}
Square both sides of the equation.
x-4-\left(-4\right)=\frac{1}{4}-\left(-4\right)
Add 4 to both sides of the equation.
x=\frac{1}{4}-\left(-4\right)
Subtracting -4 from itself leaves 0.
x=\frac{17}{4}
Subtract -4 from \frac{1}{4}.
\sqrt{\frac{17}{4}-2}=1+\sqrt{\frac{17}{4}-4}
Substitute \frac{17}{4} for x in the equation \sqrt{x-2}=1+\sqrt{x-4}.
\frac{3}{2}=\frac{3}{2}
Simplify. The value x=\frac{17}{4} satisfies the equation.
x=\frac{17}{4}
Equation \sqrt{x-2}=\sqrt{x-4}+1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}