Solve for x
x=y-16\sqrt{y+1}+66
y\geq -1\text{ and }-\sqrt{y+1}+8\geq 0
Solve for y
y=x-16\sqrt{x-1}+62
-\sqrt{x-1}+8\geq 0\text{ and }x\geq 1
Solve for x (complex solution)
x=y-16\sqrt{y+1}+66
y=63\text{ or }arg(-\sqrt{y+1}+8)<\pi
Solve for y (complex solution)
y=x-16\sqrt{x-1}+62
x=65\text{ or }arg(-\sqrt{x-1}+8)<\pi
Graph
Share
Copied to clipboard
\sqrt{x-1}+\sqrt{y+1}-\sqrt{y+1}=8-\sqrt{y+1}
Subtract \sqrt{y+1} from both sides of the equation.
\sqrt{x-1}=8-\sqrt{y+1}
Subtracting \sqrt{y+1} from itself leaves 0.
\sqrt{x-1}=-\sqrt{y+1}+8
Subtract \sqrt{y+1} from 8.
x-1=\left(-\sqrt{y+1}+8\right)^{2}
Square both sides of the equation.
x-1-\left(-1\right)=\left(-\sqrt{y+1}+8\right)^{2}-\left(-1\right)
Add 1 to both sides of the equation.
x=\left(-\sqrt{y+1}+8\right)^{2}-\left(-1\right)
Subtracting -1 from itself leaves 0.
x=y-16\sqrt{y+1}+66
Subtract -1 from \left(8-\sqrt{y+1}\right)^{2}.
\sqrt{y+1}+\sqrt{x-1}-\sqrt{x-1}=8-\sqrt{x-1}
Subtract \sqrt{x-1} from both sides of the equation.
\sqrt{y+1}=8-\sqrt{x-1}
Subtracting \sqrt{x-1} from itself leaves 0.
\sqrt{y+1}=-\sqrt{x-1}+8
Subtract \sqrt{x-1} from 8.
y+1=\left(-\sqrt{x-1}+8\right)^{2}
Square both sides of the equation.
y+1-1=\left(-\sqrt{x-1}+8\right)^{2}-1
Subtract 1 from both sides of the equation.
y=\left(-\sqrt{x-1}+8\right)^{2}-1
Subtracting 1 from itself leaves 0.
y=x-16\sqrt{x-1}+62
Subtract 1 from \left(8-\sqrt{x-1}\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}