Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{x}=4-\left(-2x+3\right)
Subtract -2x+3 from both sides of the equation.
\sqrt{x}=4-\left(-2x\right)-3
To find the opposite of -2x+3, find the opposite of each term.
\sqrt{x}=4+2x-3
The opposite of -2x is 2x.
\sqrt{x}=1+2x
Subtract 3 from 4 to get 1.
\left(\sqrt{x}\right)^{2}=\left(1+2x\right)^{2}
Square both sides of the equation.
x=\left(1+2x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=1+4x+4x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+2x\right)^{2}.
x-1=4x+4x^{2}
Subtract 1 from both sides.
x-1-4x=4x^{2}
Subtract 4x from both sides.
-3x-1=4x^{2}
Combine x and -4x to get -3x.
-3x-1-4x^{2}=0
Subtract 4x^{2} from both sides.
-4x^{2}-3x-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-4\right)\left(-1\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, -3 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-4\right)\left(-1\right)}}{2\left(-4\right)}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9+16\left(-1\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-\left(-3\right)±\sqrt{9-16}}{2\left(-4\right)}
Multiply 16 times -1.
x=\frac{-\left(-3\right)±\sqrt{-7}}{2\left(-4\right)}
Add 9 to -16.
x=\frac{-\left(-3\right)±\sqrt{7}i}{2\left(-4\right)}
Take the square root of -7.
x=\frac{3±\sqrt{7}i}{2\left(-4\right)}
The opposite of -3 is 3.
x=\frac{3±\sqrt{7}i}{-8}
Multiply 2 times -4.
x=\frac{3+\sqrt{7}i}{-8}
Now solve the equation x=\frac{3±\sqrt{7}i}{-8} when ± is plus. Add 3 to i\sqrt{7}.
x=\frac{-\sqrt{7}i-3}{8}
Divide 3+i\sqrt{7} by -8.
x=\frac{-\sqrt{7}i+3}{-8}
Now solve the equation x=\frac{3±\sqrt{7}i}{-8} when ± is minus. Subtract i\sqrt{7} from 3.
x=\frac{-3+\sqrt{7}i}{8}
Divide 3-i\sqrt{7} by -8.
x=\frac{-\sqrt{7}i-3}{8} x=\frac{-3+\sqrt{7}i}{8}
The equation is now solved.
\sqrt{\frac{-\sqrt{7}i-3}{8}}-2\times \frac{-\sqrt{7}i-3}{8}+3=4
Substitute \frac{-\sqrt{7}i-3}{8} for x in the equation \sqrt{x}-2x+3=4.
\frac{7}{2}+\frac{1}{2}i\times 7^{\frac{1}{2}}=4
Simplify. The value x=\frac{-\sqrt{7}i-3}{8} does not satisfy the equation.
\sqrt{\frac{-3+\sqrt{7}i}{8}}-2\times \frac{-3+\sqrt{7}i}{8}+3=4
Substitute \frac{-3+\sqrt{7}i}{8} for x in the equation \sqrt{x}-2x+3=4.
4=4
Simplify. The value x=\frac{-3+\sqrt{7}i}{8} satisfies the equation.
x=\frac{-3+\sqrt{7}i}{8}
Equation \sqrt{x}=2x+1 has a unique solution.