Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{x}-2\right)^{2}=\left(\sqrt{x-56}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x}\right)^{2}-4\sqrt{x}+4=\left(\sqrt{x-56}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{x}-2\right)^{2}.
x-4\sqrt{x}+4=\left(\sqrt{x-56}\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x-4\sqrt{x}+4=x-56
Calculate \sqrt{x-56} to the power of 2 and get x-56.
x-4\sqrt{x}+4-x=-56
Subtract x from both sides.
-4\sqrt{x}+4=-56
Combine x and -x to get 0.
-4\sqrt{x}=-56-4
Subtract 4 from both sides.
-4\sqrt{x}=-60
Subtract 4 from -56 to get -60.
\sqrt{x}=\frac{-60}{-4}
Divide both sides by -4.
\sqrt{x}=15
Divide -60 by -4 to get 15.
x=225
Square both sides of the equation.
\sqrt{225}-2=\sqrt{225-56}
Substitute 225 for x in the equation \sqrt{x}-2=\sqrt{x-56}.
13=13
Simplify. The value x=225 satisfies the equation.
x=225
Equation \sqrt{x}-2=\sqrt{x-56} has a unique solution.