Solve for x
x = \frac{29 - 4 \sqrt{7}}{9} \approx 2.046332751
Graph
Share
Copied to clipboard
2\sqrt{x}=9-3x
Subtract 3x from both sides of the equation.
\left(2\sqrt{x}\right)^{2}=\left(9-3x\right)^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{x}\right)^{2}=\left(9-3x\right)^{2}
Expand \left(2\sqrt{x}\right)^{2}.
4\left(\sqrt{x}\right)^{2}=\left(9-3x\right)^{2}
Calculate 2 to the power of 2 and get 4.
4x=\left(9-3x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
4x=81-54x+9x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(9-3x\right)^{2}.
4x-81=-54x+9x^{2}
Subtract 81 from both sides.
4x-81+54x=9x^{2}
Add 54x to both sides.
58x-81=9x^{2}
Combine 4x and 54x to get 58x.
58x-81-9x^{2}=0
Subtract 9x^{2} from both sides.
-9x^{2}+58x-81=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-58±\sqrt{58^{2}-4\left(-9\right)\left(-81\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 58 for b, and -81 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-58±\sqrt{3364-4\left(-9\right)\left(-81\right)}}{2\left(-9\right)}
Square 58.
x=\frac{-58±\sqrt{3364+36\left(-81\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-58±\sqrt{3364-2916}}{2\left(-9\right)}
Multiply 36 times -81.
x=\frac{-58±\sqrt{448}}{2\left(-9\right)}
Add 3364 to -2916.
x=\frac{-58±8\sqrt{7}}{2\left(-9\right)}
Take the square root of 448.
x=\frac{-58±8\sqrt{7}}{-18}
Multiply 2 times -9.
x=\frac{8\sqrt{7}-58}{-18}
Now solve the equation x=\frac{-58±8\sqrt{7}}{-18} when ± is plus. Add -58 to 8\sqrt{7}.
x=\frac{29-4\sqrt{7}}{9}
Divide -58+8\sqrt{7} by -18.
x=\frac{-8\sqrt{7}-58}{-18}
Now solve the equation x=\frac{-58±8\sqrt{7}}{-18} when ± is minus. Subtract 8\sqrt{7} from -58.
x=\frac{4\sqrt{7}+29}{9}
Divide -58-8\sqrt{7} by -18.
x=\frac{29-4\sqrt{7}}{9} x=\frac{4\sqrt{7}+29}{9}
The equation is now solved.
2\sqrt{\frac{29-4\sqrt{7}}{9}}+3\times \frac{29-4\sqrt{7}}{9}=9
Substitute \frac{29-4\sqrt{7}}{9} for x in the equation 2\sqrt{x}+3x=9.
9=9
Simplify. The value x=\frac{29-4\sqrt{7}}{9} satisfies the equation.
2\sqrt{\frac{4\sqrt{7}+29}{9}}+3\times \frac{4\sqrt{7}+29}{9}=9
Substitute \frac{4\sqrt{7}+29}{9} for x in the equation 2\sqrt{x}+3x=9.
\frac{8}{3}\times 7^{\frac{1}{2}}+\frac{31}{3}=9
Simplify. The value x=\frac{4\sqrt{7}+29}{9} does not satisfy the equation.
x=\frac{29-4\sqrt{7}}{9}
Equation 2\sqrt{x}=9-3x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}