Solve for x (complex solution)
x=\frac{-3+\sqrt{7}i}{2}\approx -1.5+1.322875656i
Graph
Share
Copied to clipboard
\left(\sqrt{x}\right)^{2}=\left(x+2\right)^{2}
Square both sides of the equation.
x=\left(x+2\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=x^{2}+4x+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
x-x^{2}=4x+4
Subtract x^{2} from both sides.
x-x^{2}-4x=4
Subtract 4x from both sides.
-3x-x^{2}=4
Combine x and -4x to get -3x.
-3x-x^{2}-4=0
Subtract 4 from both sides.
-x^{2}-3x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -3 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9+4\left(-4\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-3\right)±\sqrt{9-16}}{2\left(-1\right)}
Multiply 4 times -4.
x=\frac{-\left(-3\right)±\sqrt{-7}}{2\left(-1\right)}
Add 9 to -16.
x=\frac{-\left(-3\right)±\sqrt{7}i}{2\left(-1\right)}
Take the square root of -7.
x=\frac{3±\sqrt{7}i}{2\left(-1\right)}
The opposite of -3 is 3.
x=\frac{3±\sqrt{7}i}{-2}
Multiply 2 times -1.
x=\frac{3+\sqrt{7}i}{-2}
Now solve the equation x=\frac{3±\sqrt{7}i}{-2} when ± is plus. Add 3 to i\sqrt{7}.
x=\frac{-\sqrt{7}i-3}{2}
Divide 3+i\sqrt{7} by -2.
x=\frac{-\sqrt{7}i+3}{-2}
Now solve the equation x=\frac{3±\sqrt{7}i}{-2} when ± is minus. Subtract i\sqrt{7} from 3.
x=\frac{-3+\sqrt{7}i}{2}
Divide 3-i\sqrt{7} by -2.
x=\frac{-\sqrt{7}i-3}{2} x=\frac{-3+\sqrt{7}i}{2}
The equation is now solved.
\sqrt{\frac{-\sqrt{7}i-3}{2}}=\frac{-\sqrt{7}i-3}{2}+2
Substitute \frac{-\sqrt{7}i-3}{2} for x in the equation \sqrt{x}=x+2.
-\left(\frac{1}{2}-\frac{1}{2}i\times 7^{\frac{1}{2}}\right)=-\frac{1}{2}i\times 7^{\frac{1}{2}}+\frac{1}{2}
Simplify. The value x=\frac{-\sqrt{7}i-3}{2} does not satisfy the equation.
\sqrt{\frac{-3+\sqrt{7}i}{2}}=\frac{-3+\sqrt{7}i}{2}+2
Substitute \frac{-3+\sqrt{7}i}{2} for x in the equation \sqrt{x}=x+2.
\frac{1}{2}+\frac{1}{2}i\times 7^{\frac{1}{2}}=\frac{1}{2}+\frac{1}{2}i\times 7^{\frac{1}{2}}
Simplify. The value x=\frac{-3+\sqrt{7}i}{2} satisfies the equation.
x=\frac{-3+\sqrt{7}i}{2}
Equation \sqrt{x}=x+2 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}