Factor
\frac{4\left(\sqrt{x}+15\right)}{9}
Evaluate
\frac{4\left(\sqrt{x}+15\right)}{9}
Graph
Share
Copied to clipboard
factor(\frac{\sqrt{x}}{\frac{9}{4}}+\frac{\left(2-\frac{1}{4}\right)^{2}}{\frac{1}{2}+\frac{1}{3}-\frac{1}{60}}\times 2-\left(1-\frac{1}{6}\right))
Calculate \frac{3}{2} to the power of 2 and get \frac{9}{4}.
factor(\frac{\sqrt{x}}{\frac{9}{4}}+\frac{\left(\frac{7}{4}\right)^{2}}{\frac{1}{2}+\frac{1}{3}-\frac{1}{60}}\times 2-\left(1-\frac{1}{6}\right))
Subtract \frac{1}{4} from 2 to get \frac{7}{4}.
factor(\frac{\sqrt{x}}{\frac{9}{4}}+\frac{\frac{49}{16}}{\frac{1}{2}+\frac{1}{3}-\frac{1}{60}}\times 2-\left(1-\frac{1}{6}\right))
Calculate \frac{7}{4} to the power of 2 and get \frac{49}{16}.
factor(\frac{\sqrt{x}}{\frac{9}{4}}+\frac{\frac{49}{16}}{\frac{5}{6}-\frac{1}{60}}\times 2-\left(1-\frac{1}{6}\right))
Add \frac{1}{2} and \frac{1}{3} to get \frac{5}{6}.
factor(\frac{\sqrt{x}}{\frac{9}{4}}+\frac{\frac{49}{16}}{\frac{49}{60}}\times 2-\left(1-\frac{1}{6}\right))
Subtract \frac{1}{60} from \frac{5}{6} to get \frac{49}{60}.
factor(\frac{\sqrt{x}}{\frac{9}{4}}+\frac{49}{16}\times \frac{60}{49}\times 2-\left(1-\frac{1}{6}\right))
Divide \frac{49}{16} by \frac{49}{60} by multiplying \frac{49}{16} by the reciprocal of \frac{49}{60}.
factor(\frac{\sqrt{x}}{\frac{9}{4}}+\frac{15}{4}\times 2-\left(1-\frac{1}{6}\right))
Multiply \frac{49}{16} and \frac{60}{49} to get \frac{15}{4}.
factor(\frac{\sqrt{x}}{\frac{9}{4}}+\frac{15}{2}-\left(1-\frac{1}{6}\right))
Multiply \frac{15}{4} and 2 to get \frac{15}{2}.
factor(\frac{\sqrt{x}}{\frac{9}{4}}+\frac{15}{2}-\frac{5}{6})
Subtract \frac{1}{6} from 1 to get \frac{5}{6}.
factor(\frac{\sqrt{x}}{\frac{9}{4}}+\frac{20}{3})
Subtract \frac{5}{6} from \frac{15}{2} to get \frac{20}{3}.
factor(\frac{\sqrt{x}\times 4}{9}+\frac{20}{3})
Divide \sqrt{x} by \frac{9}{4} by multiplying \sqrt{x} by the reciprocal of \frac{9}{4}.
factor(\frac{\sqrt{x}\times 4}{9}+\frac{20\times 3}{9})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 9 and 3 is 9. Multiply \frac{20}{3} times \frac{3}{3}.
factor(\frac{\sqrt{x}\times 4+20\times 3}{9})
Since \frac{\sqrt{x}\times 4}{9} and \frac{20\times 3}{9} have the same denominator, add them by adding their numerators.
factor(\frac{4\sqrt{x}+60}{9})
Do the multiplications in \sqrt{x}\times 4+20\times 3.
4\left(\sqrt{x}+15\right)
Consider 4x^{\frac{1}{2}}+60. Factor out 4.
\frac{4\left(\sqrt{x}+15\right)}{9}
Rewrite the complete factored expression. Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}