Solve for x
x=\frac{\sqrt{41}+21}{50}\approx 0.548062485
Graph
Share
Copied to clipboard
\sqrt{x}=5x-2
Subtract 2 from both sides of the equation.
\left(\sqrt{x}\right)^{2}=\left(5x-2\right)^{2}
Square both sides of the equation.
x=\left(5x-2\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=25x^{2}-20x+4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5x-2\right)^{2}.
x-25x^{2}=-20x+4
Subtract 25x^{2} from both sides.
x-25x^{2}+20x=4
Add 20x to both sides.
21x-25x^{2}=4
Combine x and 20x to get 21x.
21x-25x^{2}-4=0
Subtract 4 from both sides.
-25x^{2}+21x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-21±\sqrt{21^{2}-4\left(-25\right)\left(-4\right)}}{2\left(-25\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -25 for a, 21 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-21±\sqrt{441-4\left(-25\right)\left(-4\right)}}{2\left(-25\right)}
Square 21.
x=\frac{-21±\sqrt{441+100\left(-4\right)}}{2\left(-25\right)}
Multiply -4 times -25.
x=\frac{-21±\sqrt{441-400}}{2\left(-25\right)}
Multiply 100 times -4.
x=\frac{-21±\sqrt{41}}{2\left(-25\right)}
Add 441 to -400.
x=\frac{-21±\sqrt{41}}{-50}
Multiply 2 times -25.
x=\frac{\sqrt{41}-21}{-50}
Now solve the equation x=\frac{-21±\sqrt{41}}{-50} when ± is plus. Add -21 to \sqrt{41}.
x=\frac{21-\sqrt{41}}{50}
Divide -21+\sqrt{41} by -50.
x=\frac{-\sqrt{41}-21}{-50}
Now solve the equation x=\frac{-21±\sqrt{41}}{-50} when ± is minus. Subtract \sqrt{41} from -21.
x=\frac{\sqrt{41}+21}{50}
Divide -21-\sqrt{41} by -50.
x=\frac{21-\sqrt{41}}{50} x=\frac{\sqrt{41}+21}{50}
The equation is now solved.
\sqrt{\frac{21-\sqrt{41}}{50}}+2=5\times \frac{21-\sqrt{41}}{50}
Substitute \frac{21-\sqrt{41}}{50} for x in the equation \sqrt{x}+2=5x.
\frac{19}{10}+\frac{1}{10}\times 41^{\frac{1}{2}}=\frac{21}{10}-\frac{1}{10}\times 41^{\frac{1}{2}}
Simplify. The value x=\frac{21-\sqrt{41}}{50} does not satisfy the equation.
\sqrt{\frac{\sqrt{41}+21}{50}}+2=5\times \frac{\sqrt{41}+21}{50}
Substitute \frac{\sqrt{41}+21}{50} for x in the equation \sqrt{x}+2=5x.
\frac{21}{10}+\frac{1}{10}\times 41^{\frac{1}{2}}=\frac{1}{10}\times 41^{\frac{1}{2}}+\frac{21}{10}
Simplify. The value x=\frac{\sqrt{41}+21}{50} satisfies the equation.
x=\frac{\sqrt{41}+21}{50}
Equation \sqrt{x}=5x-2 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}