Solve for x
x = \frac{25}{4} = 6\frac{1}{4} = 6.25
Graph
Share
Copied to clipboard
\sqrt{x}=4-\sqrt{x-4}
Subtract \sqrt{x-4} from both sides of the equation.
\left(\sqrt{x}\right)^{2}=\left(4-\sqrt{x-4}\right)^{2}
Square both sides of the equation.
x=\left(4-\sqrt{x-4}\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=16-8\sqrt{x-4}+\left(\sqrt{x-4}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-\sqrt{x-4}\right)^{2}.
x=16-8\sqrt{x-4}+x-4
Calculate \sqrt{x-4} to the power of 2 and get x-4.
x=12-8\sqrt{x-4}+x
Subtract 4 from 16 to get 12.
x+8\sqrt{x-4}=12+x
Add 8\sqrt{x-4} to both sides.
x+8\sqrt{x-4}-x=12
Subtract x from both sides.
8\sqrt{x-4}=12
Combine x and -x to get 0.
\sqrt{x-4}=\frac{12}{8}
Divide both sides by 8.
\sqrt{x-4}=\frac{3}{2}
Reduce the fraction \frac{12}{8} to lowest terms by extracting and canceling out 4.
x-4=\frac{9}{4}
Square both sides of the equation.
x-4-\left(-4\right)=\frac{9}{4}-\left(-4\right)
Add 4 to both sides of the equation.
x=\frac{9}{4}-\left(-4\right)
Subtracting -4 from itself leaves 0.
x=\frac{25}{4}
Subtract -4 from \frac{9}{4}.
\sqrt{\frac{25}{4}}+\sqrt{\frac{25}{4}-4}=4
Substitute \frac{25}{4} for x in the equation \sqrt{x}+\sqrt{x-4}=4.
4=4
Simplify. The value x=\frac{25}{4} satisfies the equation.
x=\frac{25}{4}
Equation \sqrt{x}=-\sqrt{x-4}+4 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}