Solve for x
x = \frac{19881}{289} = 68\frac{229}{289} \approx 68.792387543
Graph
Share
Copied to clipboard
\sqrt{x}=17-\sqrt{x+7}
Subtract \sqrt{x+7} from both sides of the equation.
\left(\sqrt{x}\right)^{2}=\left(17-\sqrt{x+7}\right)^{2}
Square both sides of the equation.
x=\left(17-\sqrt{x+7}\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=289-34\sqrt{x+7}+\left(\sqrt{x+7}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(17-\sqrt{x+7}\right)^{2}.
x=289-34\sqrt{x+7}+x+7
Calculate \sqrt{x+7} to the power of 2 and get x+7.
x=296-34\sqrt{x+7}+x
Add 289 and 7 to get 296.
x+34\sqrt{x+7}=296+x
Add 34\sqrt{x+7} to both sides.
x+34\sqrt{x+7}-x=296
Subtract x from both sides.
34\sqrt{x+7}=296
Combine x and -x to get 0.
\sqrt{x+7}=\frac{296}{34}
Divide both sides by 34.
\sqrt{x+7}=\frac{148}{17}
Reduce the fraction \frac{296}{34} to lowest terms by extracting and canceling out 2.
x+7=\frac{21904}{289}
Square both sides of the equation.
x+7-7=\frac{21904}{289}-7
Subtract 7 from both sides of the equation.
x=\frac{21904}{289}-7
Subtracting 7 from itself leaves 0.
x=\frac{19881}{289}
Subtract 7 from \frac{21904}{289}.
\sqrt{\frac{19881}{289}}+\sqrt{\frac{19881}{289}+7}=17
Substitute \frac{19881}{289} for x in the equation \sqrt{x}+\sqrt{x+7}=17.
17=17
Simplify. The value x=\frac{19881}{289} satisfies the equation.
x=\frac{19881}{289}
Equation \sqrt{x}=-\sqrt{x+7}+17 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}