Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{x}=17-\sqrt{x+7}
Subtract \sqrt{x+7} from both sides of the equation.
\left(\sqrt{x}\right)^{2}=\left(17-\sqrt{x+7}\right)^{2}
Square both sides of the equation.
x=\left(17-\sqrt{x+7}\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=289-34\sqrt{x+7}+\left(\sqrt{x+7}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(17-\sqrt{x+7}\right)^{2}.
x=289-34\sqrt{x+7}+x+7
Calculate \sqrt{x+7} to the power of 2 and get x+7.
x=296-34\sqrt{x+7}+x
Add 289 and 7 to get 296.
x+34\sqrt{x+7}=296+x
Add 34\sqrt{x+7} to both sides.
x+34\sqrt{x+7}-x=296
Subtract x from both sides.
34\sqrt{x+7}=296
Combine x and -x to get 0.
\sqrt{x+7}=\frac{296}{34}
Divide both sides by 34.
\sqrt{x+7}=\frac{148}{17}
Reduce the fraction \frac{296}{34} to lowest terms by extracting and canceling out 2.
x+7=\frac{21904}{289}
Square both sides of the equation.
x+7-7=\frac{21904}{289}-7
Subtract 7 from both sides of the equation.
x=\frac{21904}{289}-7
Subtracting 7 from itself leaves 0.
x=\frac{19881}{289}
Subtract 7 from \frac{21904}{289}.
\sqrt{\frac{19881}{289}}+\sqrt{\frac{19881}{289}+7}=17
Substitute \frac{19881}{289} for x in the equation \sqrt{x}+\sqrt{x+7}=17.
17=17
Simplify. The value x=\frac{19881}{289} satisfies the equation.
x=\frac{19881}{289}
Equation \sqrt{x}=-\sqrt{x+7}+17 has a unique solution.