Solve for x
x=0
Graph
Share
Copied to clipboard
\left(\sqrt{x}+\sqrt{x+6}\right)^{2}=\left(\sqrt{6+x}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x}\right)^{2}+2\sqrt{x}\sqrt{x+6}+\left(\sqrt{x+6}\right)^{2}=\left(\sqrt{6+x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{x}+\sqrt{x+6}\right)^{2}.
x+2\sqrt{x}\sqrt{x+6}+\left(\sqrt{x+6}\right)^{2}=\left(\sqrt{6+x}\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x+2\sqrt{x}\sqrt{x+6}+x+6=\left(\sqrt{6+x}\right)^{2}
Calculate \sqrt{x+6} to the power of 2 and get x+6.
2x+2\sqrt{x}\sqrt{x+6}+6=\left(\sqrt{6+x}\right)^{2}
Combine x and x to get 2x.
2x+2\sqrt{x}\sqrt{x+6}+6=6+x
Calculate \sqrt{6+x} to the power of 2 and get 6+x.
2\sqrt{x}\sqrt{x+6}=6+x-\left(2x+6\right)
Subtract 2x+6 from both sides of the equation.
2\sqrt{x}\sqrt{x+6}=6+x-2x-6
To find the opposite of 2x+6, find the opposite of each term.
2\sqrt{x}\sqrt{x+6}=6-x-6
Combine x and -2x to get -x.
2\sqrt{x}\sqrt{x+6}=-x
Subtract 6 from 6 to get 0.
\left(2\sqrt{x}\sqrt{x+6}\right)^{2}=\left(-x\right)^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{x}\right)^{2}\left(\sqrt{x+6}\right)^{2}=\left(-x\right)^{2}
Expand \left(2\sqrt{x}\sqrt{x+6}\right)^{2}.
4\left(\sqrt{x}\right)^{2}\left(\sqrt{x+6}\right)^{2}=\left(-x\right)^{2}
Calculate 2 to the power of 2 and get 4.
4x\left(\sqrt{x+6}\right)^{2}=\left(-x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
4x\left(x+6\right)=\left(-x\right)^{2}
Calculate \sqrt{x+6} to the power of 2 and get x+6.
4x^{2}+24x=\left(-x\right)^{2}
Use the distributive property to multiply 4x by x+6.
4x^{2}+24x=\left(-1\right)^{2}x^{2}
Expand \left(-x\right)^{2}.
4x^{2}+24x=1x^{2}
Calculate -1 to the power of 2 and get 1.
4x^{2}+24x=x^{2}
Reorder the terms.
4x^{2}+24x-x^{2}=0
Subtract x^{2} from both sides.
3x^{2}+24x=0
Combine 4x^{2} and -x^{2} to get 3x^{2}.
x\left(3x+24\right)=0
Factor out x.
x=0 x=-8
To find equation solutions, solve x=0 and 3x+24=0.
\sqrt{-8}+\sqrt{-8+6}=\sqrt{6-8}
Substitute -8 for x in the equation \sqrt{x}+\sqrt{x+6}=\sqrt{6+x}. The expression \sqrt{-8} is undefined because the radicand cannot be negative.
\sqrt{0}+\sqrt{0+6}=\sqrt{6+0}
Substitute 0 for x in the equation \sqrt{x}+\sqrt{x+6}=\sqrt{6+x}.
6^{\frac{1}{2}}=6^{\frac{1}{2}}
Simplify. The value x=0 satisfies the equation.
x=0
Equation \sqrt{x+6}+\sqrt{x}=\sqrt{x+6} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}