Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{x}=\sqrt{2x+4}-\sqrt{x+4}
Subtract \sqrt{x+4} from both sides of the equation.
\left(\sqrt{x}\right)^{2}=\left(\sqrt{2x+4}-\sqrt{x+4}\right)^{2}
Square both sides of the equation.
x=\left(\sqrt{2x+4}-\sqrt{x+4}\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=\left(\sqrt{2x+4}\right)^{2}-2\sqrt{2x+4}\sqrt{x+4}+\left(\sqrt{x+4}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{2x+4}-\sqrt{x+4}\right)^{2}.
x=2x+4-2\sqrt{2x+4}\sqrt{x+4}+\left(\sqrt{x+4}\right)^{2}
Calculate \sqrt{2x+4} to the power of 2 and get 2x+4.
x=2x+4-2\sqrt{2x+4}\sqrt{x+4}+x+4
Calculate \sqrt{x+4} to the power of 2 and get x+4.
x=3x+4-2\sqrt{2x+4}\sqrt{x+4}+4
Combine 2x and x to get 3x.
x=3x+8-2\sqrt{2x+4}\sqrt{x+4}
Add 4 and 4 to get 8.
x-\left(3x+8\right)=-2\sqrt{2x+4}\sqrt{x+4}
Subtract 3x+8 from both sides of the equation.
x-3x-8=-2\sqrt{2x+4}\sqrt{x+4}
To find the opposite of 3x+8, find the opposite of each term.
-2x-8=-2\sqrt{2x+4}\sqrt{x+4}
Combine x and -3x to get -2x.
\left(-2x-8\right)^{2}=\left(-2\sqrt{2x+4}\sqrt{x+4}\right)^{2}
Square both sides of the equation.
4x^{2}+32x+64=\left(-2\sqrt{2x+4}\sqrt{x+4}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-2x-8\right)^{2}.
4x^{2}+32x+64=\left(-2\right)^{2}\left(\sqrt{2x+4}\right)^{2}\left(\sqrt{x+4}\right)^{2}
Expand \left(-2\sqrt{2x+4}\sqrt{x+4}\right)^{2}.
4x^{2}+32x+64=4\left(\sqrt{2x+4}\right)^{2}\left(\sqrt{x+4}\right)^{2}
Calculate -2 to the power of 2 and get 4.
4x^{2}+32x+64=4\left(2x+4\right)\left(\sqrt{x+4}\right)^{2}
Calculate \sqrt{2x+4} to the power of 2 and get 2x+4.
4x^{2}+32x+64=4\left(2x+4\right)\left(x+4\right)
Calculate \sqrt{x+4} to the power of 2 and get x+4.
4x^{2}+32x+64=\left(8x+16\right)\left(x+4\right)
Use the distributive property to multiply 4 by 2x+4.
4x^{2}+32x+64=8x^{2}+32x+16x+64
Apply the distributive property by multiplying each term of 8x+16 by each term of x+4.
4x^{2}+32x+64=8x^{2}+48x+64
Combine 32x and 16x to get 48x.
4x^{2}+32x+64-8x^{2}=48x+64
Subtract 8x^{2} from both sides.
-4x^{2}+32x+64=48x+64
Combine 4x^{2} and -8x^{2} to get -4x^{2}.
-4x^{2}+32x+64-48x=64
Subtract 48x from both sides.
-4x^{2}-16x+64=64
Combine 32x and -48x to get -16x.
-4x^{2}-16x+64-64=0
Subtract 64 from both sides.
-4x^{2}-16x=0
Subtract 64 from 64 to get 0.
x\left(-4x-16\right)=0
Factor out x.
x=0 x=-4
To find equation solutions, solve x=0 and -4x-16=0.
\sqrt{0}+\sqrt{0+4}=\sqrt{2\times 0+4}
Substitute 0 for x in the equation \sqrt{x}+\sqrt{x+4}=\sqrt{2x+4}.
2=2
Simplify. The value x=0 satisfies the equation.
\sqrt{-4}+\sqrt{-4+4}=\sqrt{2\left(-4\right)+4}
Substitute -4 for x in the equation \sqrt{x}+\sqrt{x+4}=\sqrt{2x+4}.
2i=2i
Simplify. The value x=-4 satisfies the equation.
x=0 x=-4
List all solutions of \sqrt{x}=\sqrt{2x+4}-\sqrt{x+4}.
\sqrt{x}=\sqrt{2x+4}-\sqrt{x+4}
Subtract \sqrt{x+4} from both sides of the equation.
\left(\sqrt{x}\right)^{2}=\left(\sqrt{2x+4}-\sqrt{x+4}\right)^{2}
Square both sides of the equation.
x=\left(\sqrt{2x+4}-\sqrt{x+4}\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=\left(\sqrt{2x+4}\right)^{2}-2\sqrt{2x+4}\sqrt{x+4}+\left(\sqrt{x+4}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{2x+4}-\sqrt{x+4}\right)^{2}.
x=2x+4-2\sqrt{2x+4}\sqrt{x+4}+\left(\sqrt{x+4}\right)^{2}
Calculate \sqrt{2x+4} to the power of 2 and get 2x+4.
x=2x+4-2\sqrt{2x+4}\sqrt{x+4}+x+4
Calculate \sqrt{x+4} to the power of 2 and get x+4.
x=3x+4-2\sqrt{2x+4}\sqrt{x+4}+4
Combine 2x and x to get 3x.
x=3x+8-2\sqrt{2x+4}\sqrt{x+4}
Add 4 and 4 to get 8.
x-\left(3x+8\right)=-2\sqrt{2x+4}\sqrt{x+4}
Subtract 3x+8 from both sides of the equation.
x-3x-8=-2\sqrt{2x+4}\sqrt{x+4}
To find the opposite of 3x+8, find the opposite of each term.
-2x-8=-2\sqrt{2x+4}\sqrt{x+4}
Combine x and -3x to get -2x.
\left(-2x-8\right)^{2}=\left(-2\sqrt{2x+4}\sqrt{x+4}\right)^{2}
Square both sides of the equation.
4x^{2}+32x+64=\left(-2\sqrt{2x+4}\sqrt{x+4}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-2x-8\right)^{2}.
4x^{2}+32x+64=\left(-2\right)^{2}\left(\sqrt{2x+4}\right)^{2}\left(\sqrt{x+4}\right)^{2}
Expand \left(-2\sqrt{2x+4}\sqrt{x+4}\right)^{2}.
4x^{2}+32x+64=4\left(\sqrt{2x+4}\right)^{2}\left(\sqrt{x+4}\right)^{2}
Calculate -2 to the power of 2 and get 4.
4x^{2}+32x+64=4\left(2x+4\right)\left(\sqrt{x+4}\right)^{2}
Calculate \sqrt{2x+4} to the power of 2 and get 2x+4.
4x^{2}+32x+64=4\left(2x+4\right)\left(x+4\right)
Calculate \sqrt{x+4} to the power of 2 and get x+4.
4x^{2}+32x+64=\left(8x+16\right)\left(x+4\right)
Use the distributive property to multiply 4 by 2x+4.
4x^{2}+32x+64=8x^{2}+32x+16x+64
Apply the distributive property by multiplying each term of 8x+16 by each term of x+4.
4x^{2}+32x+64=8x^{2}+48x+64
Combine 32x and 16x to get 48x.
4x^{2}+32x+64-8x^{2}=48x+64
Subtract 8x^{2} from both sides.
-4x^{2}+32x+64=48x+64
Combine 4x^{2} and -8x^{2} to get -4x^{2}.
-4x^{2}+32x+64-48x=64
Subtract 48x from both sides.
-4x^{2}-16x+64=64
Combine 32x and -48x to get -16x.
-4x^{2}-16x+64-64=0
Subtract 64 from both sides.
-4x^{2}-16x=0
Subtract 64 from 64 to get 0.
x\left(-4x-16\right)=0
Factor out x.
x=0 x=-4
To find equation solutions, solve x=0 and -4x-16=0.
\sqrt{-4}+\sqrt{-4+4}=\sqrt{2\left(-4\right)+4}
Substitute -4 for x in the equation \sqrt{x}+\sqrt{x+4}=\sqrt{2x+4}. The expression \sqrt{-4} is undefined because the radicand cannot be negative.
\sqrt{0}+\sqrt{0+4}=\sqrt{2\times 0+4}
Substitute 0 for x in the equation \sqrt{x}+\sqrt{x+4}=\sqrt{2x+4}.
2=2
Simplify. The value x=0 satisfies the equation.
x=0
Equation \sqrt{x}=\sqrt{2x+4}-\sqrt{x+4} has a unique solution.