Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{x}=\frac{91}{\sqrt{x+13}}-\sqrt{x+13}
Subtract \sqrt{x+13} from both sides of the equation.
\left(\sqrt{x}\right)^{2}=\left(\frac{91}{\sqrt{x+13}}-\sqrt{x+13}\right)^{2}
Square both sides of the equation.
x=\left(\frac{91}{\sqrt{x+13}}-\sqrt{x+13}\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=\left(\frac{91}{\sqrt{x+13}}\right)^{2}-2\times \frac{91}{\sqrt{x+13}}\sqrt{x+13}+\left(\sqrt{x+13}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{91}{\sqrt{x+13}}-\sqrt{x+13}\right)^{2}.
x=\frac{91^{2}}{\left(\sqrt{x+13}\right)^{2}}-2\times \frac{91}{\sqrt{x+13}}\sqrt{x+13}+\left(\sqrt{x+13}\right)^{2}
To raise \frac{91}{\sqrt{x+13}} to a power, raise both numerator and denominator to the power and then divide.
x=\frac{91^{2}}{\left(\sqrt{x+13}\right)^{2}}+\frac{-2\times 91}{\sqrt{x+13}}\sqrt{x+13}+\left(\sqrt{x+13}\right)^{2}
Express -2\times \frac{91}{\sqrt{x+13}} as a single fraction.
x=\frac{91^{2}}{\left(\sqrt{x+13}\right)^{2}}+\frac{-2\times 91\sqrt{x+13}}{\sqrt{x+13}}+\left(\sqrt{x+13}\right)^{2}
Express \frac{-2\times 91}{\sqrt{x+13}}\sqrt{x+13} as a single fraction.
x=\frac{91^{2}}{\left(\sqrt{x+13}\right)^{2}}+\frac{-2\times 91\sqrt{x+13}}{\sqrt{x+13}}+x+13
Calculate \sqrt{x+13} to the power of 2 and get x+13.
x=\frac{91^{2}}{\left(\sqrt{x+13}\right)^{2}}+\frac{-2\times 91\sqrt{x+13}}{\sqrt{x+13}}+\frac{\left(x+13\right)\left(\sqrt{x+13}\right)^{2}}{\left(\sqrt{x+13}\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x+13 times \frac{\left(\sqrt{x+13}\right)^{2}}{\left(\sqrt{x+13}\right)^{2}}.
x=\frac{91^{2}+\left(x+13\right)\left(\sqrt{x+13}\right)^{2}}{\left(\sqrt{x+13}\right)^{2}}+\frac{-2\times 91\sqrt{x+13}}{\sqrt{x+13}}
Since \frac{91^{2}}{\left(\sqrt{x+13}\right)^{2}} and \frac{\left(x+13\right)\left(\sqrt{x+13}\right)^{2}}{\left(\sqrt{x+13}\right)^{2}} have the same denominator, add them by adding their numerators.
x=\frac{91^{2}}{\left(\sqrt{x+13}\right)^{2}}+\frac{-2\times 91\sqrt{x+13}}{\sqrt{x+13}}+\frac{\left(x+13\right)\left(\sqrt{x+13}\right)^{2}}{\left(\sqrt{x+13}\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x+13 times \frac{\left(\sqrt{x+13}\right)^{2}}{\left(\sqrt{x+13}\right)^{2}}.
x=\frac{91^{2}+\left(x+13\right)\left(\sqrt{x+13}\right)^{2}}{\left(\sqrt{x+13}\right)^{2}}+\frac{-2\times 91\sqrt{x+13}}{\sqrt{x+13}}
Since \frac{91^{2}}{\left(\sqrt{x+13}\right)^{2}} and \frac{\left(x+13\right)\left(\sqrt{x+13}\right)^{2}}{\left(\sqrt{x+13}\right)^{2}} have the same denominator, add them by adding their numerators.
x=\frac{91^{2}}{\left(\sqrt{x+13}\right)^{2}}+\frac{-2\times 91\sqrt{x+13}}{\sqrt{x+13}}+\frac{\left(x+13\right)\sqrt{x+13}}{\sqrt{x+13}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x+13 times \frac{\sqrt{x+13}}{\sqrt{x+13}}.
x=\frac{91^{2}}{\left(\sqrt{x+13}\right)^{2}}+\frac{-2\times 91\sqrt{x+13}+\left(x+13\right)\sqrt{x+13}}{\sqrt{x+13}}
Since \frac{-2\times 91\sqrt{x+13}}{\sqrt{x+13}} and \frac{\left(x+13\right)\sqrt{x+13}}{\sqrt{x+13}} have the same denominator, add them by adding their numerators.
x=\frac{91^{2}}{\left(\sqrt{x+13}\right)^{2}}+\frac{-182\sqrt{x+13}+x\sqrt{x+13}+13\sqrt{x+13}}{\sqrt{x+13}}
Do the multiplications in -2\times 91\sqrt{x+13}+\left(x+13\right)\sqrt{x+13}.
x=\frac{91^{2}}{\left(\sqrt{x+13}\right)^{2}}+\frac{-169\sqrt{x+13}+x\sqrt{x+13}}{\sqrt{x+13}}
Combine like terms in -182\sqrt{x+13}+x\sqrt{x+13}+13\sqrt{x+13}.
x=\frac{8281}{\left(\sqrt{x+13}\right)^{2}}+\frac{-169\sqrt{x+13}+x\sqrt{x+13}}{\sqrt{x+13}}
Calculate 91 to the power of 2 and get 8281.
x=\frac{8281}{x+13}+\frac{-169\sqrt{x+13}+x\sqrt{x+13}}{\sqrt{x+13}}
Calculate \sqrt{x+13} to the power of 2 and get x+13.
x-\frac{8281}{x+13}=\frac{-169\sqrt{x+13}+x\sqrt{x+13}}{\sqrt{x+13}}
Subtract \frac{8281}{x+13} from both sides.
\frac{x\left(x+13\right)}{x+13}-\frac{8281}{x+13}=\frac{-169\sqrt{x+13}+x\sqrt{x+13}}{\sqrt{x+13}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x+13}{x+13}.
\frac{x\left(x+13\right)-8281}{x+13}=\frac{-169\sqrt{x+13}+x\sqrt{x+13}}{\sqrt{x+13}}
Since \frac{x\left(x+13\right)}{x+13} and \frac{8281}{x+13} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+13x-8281}{x+13}=\frac{-169\sqrt{x+13}+x\sqrt{x+13}}{\sqrt{x+13}}
Do the multiplications in x\left(x+13\right)-8281.
\frac{x^{2}+13x-8281}{x+13}-\frac{-169\sqrt{x+13}+x\sqrt{x+13}}{\sqrt{x+13}}=0
Subtract \frac{-169\sqrt{x+13}+x\sqrt{x+13}}{\sqrt{x+13}} from both sides.
x^{2}+13x-8281-\left(x+13\right)^{\frac{1}{2}}\left(-169\sqrt{x+13}+x\sqrt{x+13}\right)=0
Variable x cannot be equal to -13 since division by zero is not defined. Multiply both sides of the equation by x+13.
-\sqrt{x+13}\left(\sqrt{x+13}x-169\sqrt{x+13}\right)+x^{2}+13x-8281=0
Reorder the terms.
-x\left(\sqrt{x+13}\right)^{2}+169\left(\sqrt{x+13}\right)^{2}+x^{2}+13x-8281=0
Use the distributive property to multiply -\sqrt{x+13} by \sqrt{x+13}x-169\sqrt{x+13}.
-x\left(x+13\right)+169\left(\sqrt{x+13}\right)^{2}+x^{2}+13x-8281=0
Calculate \sqrt{x+13} to the power of 2 and get x+13.
-x^{2}-13x+169\left(\sqrt{x+13}\right)^{2}+x^{2}+13x-8281=0
Use the distributive property to multiply -x by x+13.
-x^{2}-13x+169\left(x+13\right)+x^{2}+13x-8281=0
Calculate \sqrt{x+13} to the power of 2 and get x+13.
-x^{2}-13x+169x+2197+x^{2}+13x-8281=0
Use the distributive property to multiply 169 by x+13.
-x^{2}+156x+2197+x^{2}+13x-8281=0
Combine -13x and 169x to get 156x.
156x+2197+13x-8281=0
Combine -x^{2} and x^{2} to get 0.
169x+2197-8281=0
Combine 156x and 13x to get 169x.
169x-6084=0
Subtract 8281 from 2197 to get -6084.
169x=6084
Add 6084 to both sides. Anything plus zero gives itself.
x=\frac{6084}{169}
Divide both sides by 169.
x=36
Divide 6084 by 169 to get 36.
\sqrt{36}+\sqrt{36+13}=\frac{91}{\sqrt{36+13}}
Substitute 36 for x in the equation \sqrt{x}+\sqrt{x+13}=\frac{91}{\sqrt{x+13}}.
13=13
Simplify. The value x=36 satisfies the equation.
x=36
Equation \sqrt{x}=-\sqrt{x+13}+\frac{91}{\sqrt{x+13}} has a unique solution.