Solve for x
x=25
Graph
Share
Copied to clipboard
\sqrt{x}=11-\sqrt{x+11}
Subtract \sqrt{x+11} from both sides of the equation.
\left(\sqrt{x}\right)^{2}=\left(11-\sqrt{x+11}\right)^{2}
Square both sides of the equation.
x=\left(11-\sqrt{x+11}\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=121-22\sqrt{x+11}+\left(\sqrt{x+11}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(11-\sqrt{x+11}\right)^{2}.
x=121-22\sqrt{x+11}+x+11
Calculate \sqrt{x+11} to the power of 2 and get x+11.
x=132-22\sqrt{x+11}+x
Add 121 and 11 to get 132.
x+22\sqrt{x+11}=132+x
Add 22\sqrt{x+11} to both sides.
x+22\sqrt{x+11}-x=132
Subtract x from both sides.
22\sqrt{x+11}=132
Combine x and -x to get 0.
\sqrt{x+11}=\frac{132}{22}
Divide both sides by 22.
\sqrt{x+11}=6
Divide 132 by 22 to get 6.
x+11=36
Square both sides of the equation.
x+11-11=36-11
Subtract 11 from both sides of the equation.
x=36-11
Subtracting 11 from itself leaves 0.
x=25
Subtract 11 from 36.
\sqrt{25}+\sqrt{25+11}=11
Substitute 25 for x in the equation \sqrt{x}+\sqrt{x+11}=11.
11=11
Simplify. The value x=25 satisfies the equation.
x=25
Equation \sqrt{x}=-\sqrt{x+11}+11 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}