Solve for x
x=\frac{9}{16}=0.5625
Graph
Share
Copied to clipboard
\sqrt{x}=2-\sqrt{x+1}
Subtract \sqrt{x+1} from both sides of the equation.
\left(\sqrt{x}\right)^{2}=\left(2-\sqrt{x+1}\right)^{2}
Square both sides of the equation.
x=\left(2-\sqrt{x+1}\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=4-4\sqrt{x+1}+\left(\sqrt{x+1}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-\sqrt{x+1}\right)^{2}.
x=4-4\sqrt{x+1}+x+1
Calculate \sqrt{x+1} to the power of 2 and get x+1.
x=5-4\sqrt{x+1}+x
Add 4 and 1 to get 5.
x+4\sqrt{x+1}=5+x
Add 4\sqrt{x+1} to both sides.
x+4\sqrt{x+1}-x=5
Subtract x from both sides.
4\sqrt{x+1}=5
Combine x and -x to get 0.
\sqrt{x+1}=\frac{5}{4}
Divide both sides by 4.
x+1=\frac{25}{16}
Square both sides of the equation.
x+1-1=\frac{25}{16}-1
Subtract 1 from both sides of the equation.
x=\frac{25}{16}-1
Subtracting 1 from itself leaves 0.
x=\frac{9}{16}
Subtract 1 from \frac{25}{16}.
\sqrt{\frac{9}{16}}+\sqrt{\frac{9}{16}+1}=2
Substitute \frac{9}{16} for x in the equation \sqrt{x}+\sqrt{x+1}=2.
2=2
Simplify. The value x=\frac{9}{16} satisfies the equation.
x=\frac{9}{16}
Equation \sqrt{x}=-\sqrt{x+1}+2 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}