Solve for x
x=-\sqrt{2}\approx -1.414213562
x=\sqrt{2}\approx 1.414213562
x=2
x=-2
Graph
Share
Copied to clipboard
\sqrt{x^{4}+9}=\sqrt{6x^{2}+1}
Subtract -\sqrt{6x^{2}+1} from both sides of the equation.
\left(\sqrt{x^{4}+9}\right)^{2}=\left(\sqrt{6x^{2}+1}\right)^{2}
Square both sides of the equation.
x^{4}+9=\left(\sqrt{6x^{2}+1}\right)^{2}
Calculate \sqrt{x^{4}+9} to the power of 2 and get x^{4}+9.
x^{4}+9=6x^{2}+1
Calculate \sqrt{6x^{2}+1} to the power of 2 and get 6x^{2}+1.
x^{4}+9-6x^{2}=1
Subtract 6x^{2} from both sides.
x^{4}+9-6x^{2}-1=0
Subtract 1 from both sides.
x^{4}+8-6x^{2}=0
Subtract 1 from 9 to get 8.
t^{2}-6t+8=0
Substitute t for x^{2}.
t=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 1\times 8}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -6 for b, and 8 for c in the quadratic formula.
t=\frac{6±2}{2}
Do the calculations.
t=4 t=2
Solve the equation t=\frac{6±2}{2} when ± is plus and when ± is minus.
x=2 x=-2 x=\sqrt{2} x=-\sqrt{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
\sqrt{2^{4}+9}-\sqrt{6\times 2^{2}+1}=0
Substitute 2 for x in the equation \sqrt{x^{4}+9}-\sqrt{6x^{2}+1}=0.
0=0
Simplify. The value x=2 satisfies the equation.
\sqrt{\left(-2\right)^{4}+9}-\sqrt{6\left(-2\right)^{2}+1}=0
Substitute -2 for x in the equation \sqrt{x^{4}+9}-\sqrt{6x^{2}+1}=0.
0=0
Simplify. The value x=-2 satisfies the equation.
\sqrt{\left(\sqrt{2}\right)^{4}+9}-\sqrt{6\left(\sqrt{2}\right)^{2}+1}=0
Substitute \sqrt{2} for x in the equation \sqrt{x^{4}+9}-\sqrt{6x^{2}+1}=0.
0=0
Simplify. The value x=\sqrt{2} satisfies the equation.
\sqrt{\left(-\sqrt{2}\right)^{4}+9}-\sqrt{6\left(-\sqrt{2}\right)^{2}+1}=0
Substitute -\sqrt{2} for x in the equation \sqrt{x^{4}+9}-\sqrt{6x^{2}+1}=0.
0=0
Simplify. The value x=-\sqrt{2} satisfies the equation.
x=2 x=-2 x=\sqrt{2} x=-\sqrt{2}
List all solutions of \sqrt{x^{4}+9}=\sqrt{6x^{2}+1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}