Solve for x
x = -\frac{7}{5} = -1\frac{2}{5} = -1.4
Graph
Share
Copied to clipboard
\left(\sqrt{x^{2}-x-3}\right)^{2}=\left(x+2\right)^{2}
Square both sides of the equation.
x^{2}-x-3=\left(x+2\right)^{2}
Calculate \sqrt{x^{2}-x-3} to the power of 2 and get x^{2}-x-3.
x^{2}-x-3=x^{2}+4x+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
x^{2}-x-3-x^{2}=4x+4
Subtract x^{2} from both sides.
-x-3=4x+4
Combine x^{2} and -x^{2} to get 0.
-x-3-4x=4
Subtract 4x from both sides.
-5x-3=4
Combine -x and -4x to get -5x.
-5x=4+3
Add 3 to both sides.
-5x=7
Add 4 and 3 to get 7.
x=\frac{7}{-5}
Divide both sides by -5.
x=-\frac{7}{5}
Fraction \frac{7}{-5} can be rewritten as -\frac{7}{5} by extracting the negative sign.
\sqrt{\left(-\frac{7}{5}\right)^{2}-\left(-\frac{7}{5}\right)-3}=-\frac{7}{5}+2
Substitute -\frac{7}{5} for x in the equation \sqrt{x^{2}-x-3}=x+2.
\frac{3}{5}=\frac{3}{5}
Simplify. The value x=-\frac{7}{5} satisfies the equation.
x=-\frac{7}{5}
Equation \sqrt{x^{2}-x-3}=x+2 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}