Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{x^{2}-x-3}\right)^{2}=\left(x+2\right)^{2}
Square both sides of the equation.
x^{2}-x-3=\left(x+2\right)^{2}
Calculate \sqrt{x^{2}-x-3} to the power of 2 and get x^{2}-x-3.
x^{2}-x-3=x^{2}+4x+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
x^{2}-x-3-x^{2}=4x+4
Subtract x^{2} from both sides.
-x-3=4x+4
Combine x^{2} and -x^{2} to get 0.
-x-3-4x=4
Subtract 4x from both sides.
-5x-3=4
Combine -x and -4x to get -5x.
-5x=4+3
Add 3 to both sides.
-5x=7
Add 4 and 3 to get 7.
x=\frac{7}{-5}
Divide both sides by -5.
x=-\frac{7}{5}
Fraction \frac{7}{-5} can be rewritten as -\frac{7}{5} by extracting the negative sign.
\sqrt{\left(-\frac{7}{5}\right)^{2}-\left(-\frac{7}{5}\right)-3}=-\frac{7}{5}+2
Substitute -\frac{7}{5} for x in the equation \sqrt{x^{2}-x-3}=x+2.
\frac{3}{5}=\frac{3}{5}
Simplify. The value x=-\frac{7}{5} satisfies the equation.
x=-\frac{7}{5}
Equation \sqrt{x^{2}-x-3}=x+2 has a unique solution.