Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Solve for a (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{x^{2}-a^{2}}\right)^{2}=\left(x+a\right)^{2}
Square both sides of the equation.
x^{2}-a^{2}=\left(x+a\right)^{2}
Calculate \sqrt{x^{2}-a^{2}} to the power of 2 and get x^{2}-a^{2}.
x^{2}-a^{2}=x^{2}+2xa+a^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(x+a\right)^{2}.
x^{2}-a^{2}-x^{2}=2xa+a^{2}
Subtract x^{2} from both sides.
-a^{2}=2xa+a^{2}
Combine x^{2} and -x^{2} to get 0.
2xa+a^{2}=-a^{2}
Swap sides so that all variable terms are on the left hand side.
2xa=-a^{2}-a^{2}
Subtract a^{2} from both sides.
2xa=-2a^{2}
Combine -a^{2} and -a^{2} to get -2a^{2}.
2ax=-2a^{2}
The equation is in standard form.
\frac{2ax}{2a}=-\frac{2a^{2}}{2a}
Divide both sides by 2a.
x=-\frac{2a^{2}}{2a}
Dividing by 2a undoes the multiplication by 2a.
x=-a
Divide -2a^{2} by 2a.
\sqrt{\left(-a\right)^{2}-a^{2}}=-a+a
Substitute -a for x in the equation \sqrt{x^{2}-a^{2}}=x+a.
0=0
Simplify. The value x=-a satisfies the equation.
x=-a
Equation \sqrt{x^{2}-a^{2}}=x+a has a unique solution.
\left(\sqrt{x^{2}-a^{2}}\right)^{2}=\left(x+a\right)^{2}
Square both sides of the equation.
x^{2}-a^{2}=\left(x+a\right)^{2}
Calculate \sqrt{x^{2}-a^{2}} to the power of 2 and get x^{2}-a^{2}.
x^{2}-a^{2}=x^{2}+2xa+a^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(x+a\right)^{2}.
x^{2}-a^{2}-x^{2}=2xa+a^{2}
Subtract x^{2} from both sides.
-a^{2}=2xa+a^{2}
Combine x^{2} and -x^{2} to get 0.
2xa+a^{2}=-a^{2}
Swap sides so that all variable terms are on the left hand side.
2xa=-a^{2}-a^{2}
Subtract a^{2} from both sides.
2xa=-2a^{2}
Combine -a^{2} and -a^{2} to get -2a^{2}.
2ax=-2a^{2}
The equation is in standard form.
\frac{2ax}{2a}=-\frac{2a^{2}}{2a}
Divide both sides by 2a.
x=-\frac{2a^{2}}{2a}
Dividing by 2a undoes the multiplication by 2a.
x=-a
Divide -2a^{2} by 2a.
\sqrt{\left(-a\right)^{2}-a^{2}}=-a+a
Substitute -a for x in the equation \sqrt{x^{2}-a^{2}}=x+a.
0=0
Simplify. The value x=-a satisfies the equation.
x=-a
Equation \sqrt{x^{2}-a^{2}}=x+a has a unique solution.