Solve for x
x=4
Graph
Share
Copied to clipboard
\sqrt{x^{2}-5x+4}=x-3-1
Subtract 1 from both sides of the equation.
\sqrt{x^{2}-5x+4}=x-4
Subtract 1 from -3 to get -4.
\left(\sqrt{x^{2}-5x+4}\right)^{2}=\left(x-4\right)^{2}
Square both sides of the equation.
x^{2}-5x+4=\left(x-4\right)^{2}
Calculate \sqrt{x^{2}-5x+4} to the power of 2 and get x^{2}-5x+4.
x^{2}-5x+4=x^{2}-8x+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
x^{2}-5x+4-x^{2}=-8x+16
Subtract x^{2} from both sides.
-5x+4=-8x+16
Combine x^{2} and -x^{2} to get 0.
-5x+4+8x=16
Add 8x to both sides.
3x+4=16
Combine -5x and 8x to get 3x.
3x=16-4
Subtract 4 from both sides.
3x=12
Subtract 4 from 16 to get 12.
x=\frac{12}{3}
Divide both sides by 3.
x=4
Divide 12 by 3 to get 4.
\sqrt{4^{2}-5\times 4+4}+1=4-3
Substitute 4 for x in the equation \sqrt{x^{2}-5x+4}+1=x-3.
1=1
Simplify. The value x=4 satisfies the equation.
x=4
Equation \sqrt{x^{2}-5x+4}=x-4 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}