Solve for x
x=2
Graph
Share
Copied to clipboard
\sqrt{x^{2}-4}=-\sqrt{x-2}
Subtract \sqrt{x-2} from both sides of the equation.
\left(\sqrt{x^{2}-4}\right)^{2}=\left(-\sqrt{x-2}\right)^{2}
Square both sides of the equation.
x^{2}-4=\left(-\sqrt{x-2}\right)^{2}
Calculate \sqrt{x^{2}-4} to the power of 2 and get x^{2}-4.
x^{2}-4=\left(-1\right)^{2}\left(\sqrt{x-2}\right)^{2}
Expand \left(-\sqrt{x-2}\right)^{2}.
x^{2}-4=1\left(\sqrt{x-2}\right)^{2}
Calculate -1 to the power of 2 and get 1.
x^{2}-4=1\left(x-2\right)
Calculate \sqrt{x-2} to the power of 2 and get x-2.
x^{2}-4=x-2
Use the distributive property to multiply 1 by x-2.
x^{2}-4-x=-2
Subtract x from both sides.
x^{2}-4-x+2=0
Add 2 to both sides.
x^{2}-2-x=0
Add -4 and 2 to get -2.
x^{2}-x-2=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-1 ab=-2
To solve the equation, factor x^{2}-x-2 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
a=-2 b=1
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. The only such pair is the system solution.
\left(x-2\right)\left(x+1\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=2 x=-1
To find equation solutions, solve x-2=0 and x+1=0.
\sqrt{2^{2}-4}+\sqrt{2-2}=0
Substitute 2 for x in the equation \sqrt{x^{2}-4}+\sqrt{x-2}=0.
0=0
Simplify. The value x=2 satisfies the equation.
\sqrt{\left(-1\right)^{2}-4}+\sqrt{-1-2}=0
Substitute -1 for x in the equation \sqrt{x^{2}-4}+\sqrt{x-2}=0. The expression \sqrt{\left(-1\right)^{2}-4} is undefined because the radicand cannot be negative.
x=2
Equation \sqrt{x^{2}-4}=-\sqrt{x-2} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}