Solve for x (complex solution)
x=\sqrt{3}+1\approx 2.732050808
x=1-\sqrt{3}\approx -0.732050808
Solve for x
x=\sqrt{3}+1\approx 2.732050808
Graph
Share
Copied to clipboard
\left(\sqrt{x^{2}-1}\right)^{2}=\left(\sqrt{2x+1}\right)^{2}
Square both sides of the equation.
x^{2}-1=\left(\sqrt{2x+1}\right)^{2}
Calculate \sqrt{x^{2}-1} to the power of 2 and get x^{2}-1.
x^{2}-1=2x+1
Calculate \sqrt{2x+1} to the power of 2 and get 2x+1.
x^{2}-1-2x=1
Subtract 2x from both sides.
x^{2}-1-2x-1=0
Subtract 1 from both sides.
x^{2}-2-2x=0
Subtract 1 from -1 to get -2.
x^{2}-2x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-2\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-2\right)}}{2}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+8}}{2}
Multiply -4 times -2.
x=\frac{-\left(-2\right)±\sqrt{12}}{2}
Add 4 to 8.
x=\frac{-\left(-2\right)±2\sqrt{3}}{2}
Take the square root of 12.
x=\frac{2±2\sqrt{3}}{2}
The opposite of -2 is 2.
x=\frac{2\sqrt{3}+2}{2}
Now solve the equation x=\frac{2±2\sqrt{3}}{2} when ± is plus. Add 2 to 2\sqrt{3}.
x=\sqrt{3}+1
Divide 2+2\sqrt{3} by 2.
x=\frac{2-2\sqrt{3}}{2}
Now solve the equation x=\frac{2±2\sqrt{3}}{2} when ± is minus. Subtract 2\sqrt{3} from 2.
x=1-\sqrt{3}
Divide 2-2\sqrt{3} by 2.
x=\sqrt{3}+1 x=1-\sqrt{3}
The equation is now solved.
\sqrt{\left(\sqrt{3}+1\right)^{2}-1}=\sqrt{2\left(\sqrt{3}+1\right)+1}
Substitute \sqrt{3}+1 for x in the equation \sqrt{x^{2}-1}=\sqrt{2x+1}.
\left(3+2\times 3^{\frac{1}{2}}\right)^{\frac{1}{2}}=\left(2\times 3^{\frac{1}{2}}+3\right)^{\frac{1}{2}}
Simplify. The value x=\sqrt{3}+1 satisfies the equation.
\sqrt{\left(1-\sqrt{3}\right)^{2}-1}=\sqrt{2\left(1-\sqrt{3}\right)+1}
Substitute 1-\sqrt{3} for x in the equation \sqrt{x^{2}-1}=\sqrt{2x+1}.
i\left(-\left(3-2\times 3^{\frac{1}{2}}\right)\right)^{\frac{1}{2}}=i\left(-\left(3-2\times 3^{\frac{1}{2}}\right)\right)^{\frac{1}{2}}
Simplify. The value x=1-\sqrt{3} satisfies the equation.
x=\sqrt{3}+1 x=1-\sqrt{3}
List all solutions of \sqrt{x^{2}-1}=\sqrt{2x+1}.
\left(\sqrt{x^{2}-1}\right)^{2}=\left(\sqrt{2x+1}\right)^{2}
Square both sides of the equation.
x^{2}-1=\left(\sqrt{2x+1}\right)^{2}
Calculate \sqrt{x^{2}-1} to the power of 2 and get x^{2}-1.
x^{2}-1=2x+1
Calculate \sqrt{2x+1} to the power of 2 and get 2x+1.
x^{2}-1-2x=1
Subtract 2x from both sides.
x^{2}-1-2x-1=0
Subtract 1 from both sides.
x^{2}-2-2x=0
Subtract 1 from -1 to get -2.
x^{2}-2x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-2\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-2\right)}}{2}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+8}}{2}
Multiply -4 times -2.
x=\frac{-\left(-2\right)±\sqrt{12}}{2}
Add 4 to 8.
x=\frac{-\left(-2\right)±2\sqrt{3}}{2}
Take the square root of 12.
x=\frac{2±2\sqrt{3}}{2}
The opposite of -2 is 2.
x=\frac{2\sqrt{3}+2}{2}
Now solve the equation x=\frac{2±2\sqrt{3}}{2} when ± is plus. Add 2 to 2\sqrt{3}.
x=\sqrt{3}+1
Divide 2+2\sqrt{3} by 2.
x=\frac{2-2\sqrt{3}}{2}
Now solve the equation x=\frac{2±2\sqrt{3}}{2} when ± is minus. Subtract 2\sqrt{3} from 2.
x=1-\sqrt{3}
Divide 2-2\sqrt{3} by 2.
x=\sqrt{3}+1 x=1-\sqrt{3}
The equation is now solved.
\sqrt{\left(\sqrt{3}+1\right)^{2}-1}=\sqrt{2\left(\sqrt{3}+1\right)+1}
Substitute \sqrt{3}+1 for x in the equation \sqrt{x^{2}-1}=\sqrt{2x+1}.
\left(3+2\times 3^{\frac{1}{2}}\right)^{\frac{1}{2}}=\left(2\times 3^{\frac{1}{2}}+3\right)^{\frac{1}{2}}
Simplify. The value x=\sqrt{3}+1 satisfies the equation.
\sqrt{\left(1-\sqrt{3}\right)^{2}-1}=\sqrt{2\left(1-\sqrt{3}\right)+1}
Substitute 1-\sqrt{3} for x in the equation \sqrt{x^{2}-1}=\sqrt{2x+1}. The expression \sqrt{\left(1-\sqrt{3}\right)^{2}-1} is undefined because the radicand cannot be negative.
x=\sqrt{3}+1
Equation \sqrt{x^{2}-1}=\sqrt{2x+1} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}