Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{x^{2}-1}\right)^{2}=\left(\sqrt{2x+1}\right)^{2}
Square both sides of the equation.
x^{2}-1=\left(\sqrt{2x+1}\right)^{2}
Calculate \sqrt{x^{2}-1} to the power of 2 and get x^{2}-1.
x^{2}-1=2x+1
Calculate \sqrt{2x+1} to the power of 2 and get 2x+1.
x^{2}-1-2x=1
Subtract 2x from both sides.
x^{2}-1-2x-1=0
Subtract 1 from both sides.
x^{2}-2-2x=0
Subtract 1 from -1 to get -2.
x^{2}-2x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-2\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-2\right)}}{2}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+8}}{2}
Multiply -4 times -2.
x=\frac{-\left(-2\right)±\sqrt{12}}{2}
Add 4 to 8.
x=\frac{-\left(-2\right)±2\sqrt{3}}{2}
Take the square root of 12.
x=\frac{2±2\sqrt{3}}{2}
The opposite of -2 is 2.
x=\frac{2\sqrt{3}+2}{2}
Now solve the equation x=\frac{2±2\sqrt{3}}{2} when ± is plus. Add 2 to 2\sqrt{3}.
x=\sqrt{3}+1
Divide 2+2\sqrt{3} by 2.
x=\frac{2-2\sqrt{3}}{2}
Now solve the equation x=\frac{2±2\sqrt{3}}{2} when ± is minus. Subtract 2\sqrt{3} from 2.
x=1-\sqrt{3}
Divide 2-2\sqrt{3} by 2.
x=\sqrt{3}+1 x=1-\sqrt{3}
The equation is now solved.
\sqrt{\left(\sqrt{3}+1\right)^{2}-1}=\sqrt{2\left(\sqrt{3}+1\right)+1}
Substitute \sqrt{3}+1 for x in the equation \sqrt{x^{2}-1}=\sqrt{2x+1}.
\left(3+2\times 3^{\frac{1}{2}}\right)^{\frac{1}{2}}=\left(2\times 3^{\frac{1}{2}}+3\right)^{\frac{1}{2}}
Simplify. The value x=\sqrt{3}+1 satisfies the equation.
\sqrt{\left(1-\sqrt{3}\right)^{2}-1}=\sqrt{2\left(1-\sqrt{3}\right)+1}
Substitute 1-\sqrt{3} for x in the equation \sqrt{x^{2}-1}=\sqrt{2x+1}.
i\left(-\left(3-2\times 3^{\frac{1}{2}}\right)\right)^{\frac{1}{2}}=i\left(-\left(3-2\times 3^{\frac{1}{2}}\right)\right)^{\frac{1}{2}}
Simplify. The value x=1-\sqrt{3} satisfies the equation.
x=\sqrt{3}+1 x=1-\sqrt{3}
List all solutions of \sqrt{x^{2}-1}=\sqrt{2x+1}.
\left(\sqrt{x^{2}-1}\right)^{2}=\left(\sqrt{2x+1}\right)^{2}
Square both sides of the equation.
x^{2}-1=\left(\sqrt{2x+1}\right)^{2}
Calculate \sqrt{x^{2}-1} to the power of 2 and get x^{2}-1.
x^{2}-1=2x+1
Calculate \sqrt{2x+1} to the power of 2 and get 2x+1.
x^{2}-1-2x=1
Subtract 2x from both sides.
x^{2}-1-2x-1=0
Subtract 1 from both sides.
x^{2}-2-2x=0
Subtract 1 from -1 to get -2.
x^{2}-2x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-2\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-2\right)}}{2}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+8}}{2}
Multiply -4 times -2.
x=\frac{-\left(-2\right)±\sqrt{12}}{2}
Add 4 to 8.
x=\frac{-\left(-2\right)±2\sqrt{3}}{2}
Take the square root of 12.
x=\frac{2±2\sqrt{3}}{2}
The opposite of -2 is 2.
x=\frac{2\sqrt{3}+2}{2}
Now solve the equation x=\frac{2±2\sqrt{3}}{2} when ± is plus. Add 2 to 2\sqrt{3}.
x=\sqrt{3}+1
Divide 2+2\sqrt{3} by 2.
x=\frac{2-2\sqrt{3}}{2}
Now solve the equation x=\frac{2±2\sqrt{3}}{2} when ± is minus. Subtract 2\sqrt{3} from 2.
x=1-\sqrt{3}
Divide 2-2\sqrt{3} by 2.
x=\sqrt{3}+1 x=1-\sqrt{3}
The equation is now solved.
\sqrt{\left(\sqrt{3}+1\right)^{2}-1}=\sqrt{2\left(\sqrt{3}+1\right)+1}
Substitute \sqrt{3}+1 for x in the equation \sqrt{x^{2}-1}=\sqrt{2x+1}.
\left(3+2\times 3^{\frac{1}{2}}\right)^{\frac{1}{2}}=\left(2\times 3^{\frac{1}{2}}+3\right)^{\frac{1}{2}}
Simplify. The value x=\sqrt{3}+1 satisfies the equation.
\sqrt{\left(1-\sqrt{3}\right)^{2}-1}=\sqrt{2\left(1-\sqrt{3}\right)+1}
Substitute 1-\sqrt{3} for x in the equation \sqrt{x^{2}-1}=\sqrt{2x+1}. The expression \sqrt{\left(1-\sqrt{3}\right)^{2}-1} is undefined because the radicand cannot be negative.
x=\sqrt{3}+1
Equation \sqrt{x^{2}-1}=\sqrt{2x+1} has a unique solution.