Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{x^{2}+y^{2}}\right)^{2}=\left(\sqrt{\left(x-5\right)^{2}+\left(y+3\right)^{2}}\right)^{2}
Square both sides of the equation.
x^{2}+y^{2}=\left(\sqrt{\left(x-5\right)^{2}+\left(y+3\right)^{2}}\right)^{2}
Calculate \sqrt{x^{2}+y^{2}} to the power of 2 and get x^{2}+y^{2}.
x^{2}+y^{2}=\left(\sqrt{x^{2}-10x+25+\left(y+3\right)^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
x^{2}+y^{2}=\left(\sqrt{x^{2}-10x+25+y^{2}+6y+9}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+3\right)^{2}.
x^{2}+y^{2}=\left(\sqrt{x^{2}-10x+34+y^{2}+6y}\right)^{2}
Add 25 and 9 to get 34.
x^{2}+y^{2}=x^{2}-10x+34+y^{2}+6y
Calculate \sqrt{x^{2}-10x+34+y^{2}+6y} to the power of 2 and get x^{2}-10x+34+y^{2}+6y.
x^{2}+y^{2}-x^{2}=-10x+34+y^{2}+6y
Subtract x^{2} from both sides.
y^{2}=-10x+34+y^{2}+6y
Combine x^{2} and -x^{2} to get 0.
-10x+34+y^{2}+6y=y^{2}
Swap sides so that all variable terms are on the left hand side.
-10x+y^{2}+6y=y^{2}-34
Subtract 34 from both sides.
-10x+6y=y^{2}-34-y^{2}
Subtract y^{2} from both sides.
-10x+6y=-34
Combine y^{2} and -y^{2} to get 0.
-10x=-34-6y
Subtract 6y from both sides.
-10x=-6y-34
The equation is in standard form.
\frac{-10x}{-10}=\frac{-6y-34}{-10}
Divide both sides by -10.
x=\frac{-6y-34}{-10}
Dividing by -10 undoes the multiplication by -10.
x=\frac{3y+17}{5}
Divide -34-6y by -10.
\sqrt{\left(\frac{3y+17}{5}\right)^{2}+y^{2}}=\sqrt{\left(\frac{3y+17}{5}-5\right)^{2}+\left(y+3\right)^{2}}
Substitute \frac{3y+17}{5} for x in the equation \sqrt{x^{2}+y^{2}}=\sqrt{\left(x-5\right)^{2}+\left(y+3\right)^{2}}.
\frac{1}{5}\left(34y^{2}+102y+289\right)^{\frac{1}{2}}=\frac{1}{5}\left(289+102y+34y^{2}\right)^{\frac{1}{2}}
Simplify. The value x=\frac{3y+17}{5} satisfies the equation.
x=\frac{3y+17}{5}
Equation \sqrt{x^{2}+y^{2}}=\sqrt{\left(y+3\right)^{2}+\left(x-5\right)^{2}} has a unique solution.
\left(\sqrt{x^{2}+y^{2}}\right)^{2}=\left(\sqrt{\left(x-5\right)^{2}+\left(y+3\right)^{2}}\right)^{2}
Square both sides of the equation.
x^{2}+y^{2}=\left(\sqrt{\left(x-5\right)^{2}+\left(y+3\right)^{2}}\right)^{2}
Calculate \sqrt{x^{2}+y^{2}} to the power of 2 and get x^{2}+y^{2}.
x^{2}+y^{2}=\left(\sqrt{x^{2}-10x+25+\left(y+3\right)^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
x^{2}+y^{2}=\left(\sqrt{x^{2}-10x+25+y^{2}+6y+9}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+3\right)^{2}.
x^{2}+y^{2}=\left(\sqrt{x^{2}-10x+34+y^{2}+6y}\right)^{2}
Add 25 and 9 to get 34.
x^{2}+y^{2}=x^{2}-10x+34+y^{2}+6y
Calculate \sqrt{x^{2}-10x+34+y^{2}+6y} to the power of 2 and get x^{2}-10x+34+y^{2}+6y.
x^{2}+y^{2}-y^{2}=x^{2}-10x+34+6y
Subtract y^{2} from both sides.
x^{2}=x^{2}-10x+34+6y
Combine y^{2} and -y^{2} to get 0.
x^{2}-10x+34+6y=x^{2}
Swap sides so that all variable terms are on the left hand side.
-10x+34+6y=x^{2}-x^{2}
Subtract x^{2} from both sides.
-10x+34+6y=0
Combine x^{2} and -x^{2} to get 0.
34+6y=10x
Add 10x to both sides. Anything plus zero gives itself.
6y=10x-34
Subtract 34 from both sides.
\frac{6y}{6}=\frac{10x-34}{6}
Divide both sides by 6.
y=\frac{10x-34}{6}
Dividing by 6 undoes the multiplication by 6.
y=\frac{5x-17}{3}
Divide 10x-34 by 6.
\sqrt{x^{2}+\left(\frac{5x-17}{3}\right)^{2}}=\sqrt{\left(x-5\right)^{2}+\left(\frac{5x-17}{3}+3\right)^{2}}
Substitute \frac{5x-17}{3} for y in the equation \sqrt{x^{2}+y^{2}}=\sqrt{\left(x-5\right)^{2}+\left(y+3\right)^{2}}.
\frac{1}{3}\left(34x^{2}-170x+289\right)^{\frac{1}{2}}=\frac{1}{3}\left(289-170x+34x^{2}\right)^{\frac{1}{2}}
Simplify. The value y=\frac{5x-17}{3} satisfies the equation.
y=\frac{5x-17}{3}
Equation \sqrt{x^{2}+y^{2}}=\sqrt{\left(y+3\right)^{2}+\left(x-5\right)^{2}} has a unique solution.