Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{x^{2}+6x+3}=2+x
Subtract -x from both sides of the equation.
\left(\sqrt{x^{2}+6x+3}\right)^{2}=\left(2+x\right)^{2}
Square both sides of the equation.
x^{2}+6x+3=\left(2+x\right)^{2}
Calculate \sqrt{x^{2}+6x+3} to the power of 2 and get x^{2}+6x+3.
x^{2}+6x+3=4+4x+x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+x\right)^{2}.
x^{2}+6x+3-4x=4+x^{2}
Subtract 4x from both sides.
x^{2}+2x+3=4+x^{2}
Combine 6x and -4x to get 2x.
x^{2}+2x+3-x^{2}=4
Subtract x^{2} from both sides.
2x+3=4
Combine x^{2} and -x^{2} to get 0.
2x=4-3
Subtract 3 from both sides.
2x=1
Subtract 3 from 4 to get 1.
x=\frac{1}{2}
Divide both sides by 2.
\sqrt{\left(\frac{1}{2}\right)^{2}+6\times \frac{1}{2}+3}-\frac{1}{2}=2
Substitute \frac{1}{2} for x in the equation \sqrt{x^{2}+6x+3}-x=2.
2=2
Simplify. The value x=\frac{1}{2} satisfies the equation.
x=\frac{1}{2}
Equation \sqrt{x^{2}+6x+3}=x+2 has a unique solution.