Solve for x
x=\frac{\sqrt{70}}{7}-1\approx 0.195228609
x=-\frac{\sqrt{70}}{7}-1\approx -2.195228609
Graph
Share
Copied to clipboard
\left(\sqrt{x^{2}+2x+3}\right)^{2}=\left(2\sqrt{2x^{2}+4x}\right)^{2}
Square both sides of the equation.
x^{2}+2x+3=\left(2\sqrt{2x^{2}+4x}\right)^{2}
Calculate \sqrt{x^{2}+2x+3} to the power of 2 and get x^{2}+2x+3.
x^{2}+2x+3=2^{2}\left(\sqrt{2x^{2}+4x}\right)^{2}
Expand \left(2\sqrt{2x^{2}+4x}\right)^{2}.
x^{2}+2x+3=4\left(\sqrt{2x^{2}+4x}\right)^{2}
Calculate 2 to the power of 2 and get 4.
x^{2}+2x+3=4\left(2x^{2}+4x\right)
Calculate \sqrt{2x^{2}+4x} to the power of 2 and get 2x^{2}+4x.
x^{2}+2x+3=8x^{2}+16x
Use the distributive property to multiply 4 by 2x^{2}+4x.
x^{2}+2x+3-8x^{2}=16x
Subtract 8x^{2} from both sides.
-7x^{2}+2x+3=16x
Combine x^{2} and -8x^{2} to get -7x^{2}.
-7x^{2}+2x+3-16x=0
Subtract 16x from both sides.
-7x^{2}-14x+3=0
Combine 2x and -16x to get -14x.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\left(-7\right)\times 3}}{2\left(-7\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -7 for a, -14 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\left(-7\right)\times 3}}{2\left(-7\right)}
Square -14.
x=\frac{-\left(-14\right)±\sqrt{196+28\times 3}}{2\left(-7\right)}
Multiply -4 times -7.
x=\frac{-\left(-14\right)±\sqrt{196+84}}{2\left(-7\right)}
Multiply 28 times 3.
x=\frac{-\left(-14\right)±\sqrt{280}}{2\left(-7\right)}
Add 196 to 84.
x=\frac{-\left(-14\right)±2\sqrt{70}}{2\left(-7\right)}
Take the square root of 280.
x=\frac{14±2\sqrt{70}}{2\left(-7\right)}
The opposite of -14 is 14.
x=\frac{14±2\sqrt{70}}{-14}
Multiply 2 times -7.
x=\frac{2\sqrt{70}+14}{-14}
Now solve the equation x=\frac{14±2\sqrt{70}}{-14} when ± is plus. Add 14 to 2\sqrt{70}.
x=-\frac{\sqrt{70}}{7}-1
Divide 14+2\sqrt{70} by -14.
x=\frac{14-2\sqrt{70}}{-14}
Now solve the equation x=\frac{14±2\sqrt{70}}{-14} when ± is minus. Subtract 2\sqrt{70} from 14.
x=\frac{\sqrt{70}}{7}-1
Divide 14-2\sqrt{70} by -14.
x=-\frac{\sqrt{70}}{7}-1 x=\frac{\sqrt{70}}{7}-1
The equation is now solved.
\sqrt{\left(-\frac{\sqrt{70}}{7}-1\right)^{2}+2\left(-\frac{\sqrt{70}}{7}-1\right)+3}=2\sqrt{2\left(-\frac{\sqrt{70}}{7}-1\right)^{2}+4\left(-\frac{\sqrt{70}}{7}-1\right)}
Substitute -\frac{\sqrt{70}}{7}-1 for x in the equation \sqrt{x^{2}+2x+3}=2\sqrt{2x^{2}+4x}.
\frac{2}{7}\times 42^{\frac{1}{2}}=\frac{2}{7}\times 42^{\frac{1}{2}}
Simplify. The value x=-\frac{\sqrt{70}}{7}-1 satisfies the equation.
\sqrt{\left(\frac{\sqrt{70}}{7}-1\right)^{2}+2\left(\frac{\sqrt{70}}{7}-1\right)+3}=2\sqrt{2\left(\frac{\sqrt{70}}{7}-1\right)^{2}+4\left(\frac{\sqrt{70}}{7}-1\right)}
Substitute \frac{\sqrt{70}}{7}-1 for x in the equation \sqrt{x^{2}+2x+3}=2\sqrt{2x^{2}+4x}.
\frac{2}{7}\times 42^{\frac{1}{2}}=\frac{2}{7}\times 42^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{70}}{7}-1 satisfies the equation.
x=-\frac{\sqrt{70}}{7}-1 x=\frac{\sqrt{70}}{7}-1
List all solutions of \sqrt{x^{2}+2x+3}=2\sqrt{2x^{2}+4x}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}