Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{x^{2}+2x+1}\right)^{2}=\left(\sqrt{x+5}\right)^{2}
Square both sides of the equation.
x^{2}+2x+1=\left(\sqrt{x+5}\right)^{2}
Calculate \sqrt{x^{2}+2x+1} to the power of 2 and get x^{2}+2x+1.
x^{2}+2x+1=x+5
Calculate \sqrt{x+5} to the power of 2 and get x+5.
x^{2}+2x+1-x=5
Subtract x from both sides.
x^{2}+x+1=5
Combine 2x and -x to get x.
x^{2}+x+1-5=0
Subtract 5 from both sides.
x^{2}+x-4=0
Subtract 5 from 1 to get -4.
x=\frac{-1±\sqrt{1^{2}-4\left(-4\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 1 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-4\right)}}{2}
Square 1.
x=\frac{-1±\sqrt{1+16}}{2}
Multiply -4 times -4.
x=\frac{-1±\sqrt{17}}{2}
Add 1 to 16.
x=\frac{\sqrt{17}-1}{2}
Now solve the equation x=\frac{-1±\sqrt{17}}{2} when ± is plus. Add -1 to \sqrt{17}.
x=\frac{-\sqrt{17}-1}{2}
Now solve the equation x=\frac{-1±\sqrt{17}}{2} when ± is minus. Subtract \sqrt{17} from -1.
x=\frac{\sqrt{17}-1}{2} x=\frac{-\sqrt{17}-1}{2}
The equation is now solved.
\sqrt{\left(\frac{\sqrt{17}-1}{2}\right)^{2}+2\times \frac{\sqrt{17}-1}{2}+1}=\sqrt{\frac{\sqrt{17}-1}{2}+5}
Substitute \frac{\sqrt{17}-1}{2} for x in the equation \sqrt{x^{2}+2x+1}=\sqrt{x+5}.
\frac{1}{2}\times 17^{\frac{1}{2}}+\frac{1}{2}=\frac{1}{2}+\frac{1}{2}\times 17^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{17}-1}{2} satisfies the equation.
\sqrt{\left(\frac{-\sqrt{17}-1}{2}\right)^{2}+2\times \frac{-\sqrt{17}-1}{2}+1}=\sqrt{\frac{-\sqrt{17}-1}{2}+5}
Substitute \frac{-\sqrt{17}-1}{2} for x in the equation \sqrt{x^{2}+2x+1}=\sqrt{x+5}.
\frac{1}{2}\times 17^{\frac{1}{2}}-\frac{1}{2}=-\left(\frac{1}{2}-\frac{1}{2}\times 17^{\frac{1}{2}}\right)
Simplify. The value x=\frac{-\sqrt{17}-1}{2} satisfies the equation.
x=\frac{\sqrt{17}-1}{2} x=\frac{-\sqrt{17}-1}{2}
List all solutions of \sqrt{x^{2}+2x+1}=\sqrt{x+5}.