Solve for x
x=0
Graph
Share
Copied to clipboard
\left(\sqrt{x^{2}+16}\right)^{2}=\left(x+4\right)^{2}
Square both sides of the equation.
x^{2}+16=\left(x+4\right)^{2}
Calculate \sqrt{x^{2}+16} to the power of 2 and get x^{2}+16.
x^{2}+16=x^{2}+8x+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
x^{2}+16-x^{2}=8x+16
Subtract x^{2} from both sides.
16=8x+16
Combine x^{2} and -x^{2} to get 0.
8x+16=16
Swap sides so that all variable terms are on the left hand side.
8x=16-16
Subtract 16 from both sides.
8x=0
Subtract 16 from 16 to get 0.
x=0
Product of two numbers is equal to 0 if at least one of them is 0. Since 8 is not equal to 0, x must be equal to 0.
\sqrt{0^{2}+16}=0+4
Substitute 0 for x in the equation \sqrt{x^{2}+16}=x+4.
4=4
Simplify. The value x=0 satisfies the equation.
x=0
Equation \sqrt{x^{2}+16}=x+4 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}