Solve for x
x=16
Graph
Share
Copied to clipboard
\left(\sqrt{x+9}\right)^{2}=\left(\sqrt{x}+1\right)^{2}
Square both sides of the equation.
x+9=\left(\sqrt{x}+1\right)^{2}
Calculate \sqrt{x+9} to the power of 2 and get x+9.
x+9=\left(\sqrt{x}\right)^{2}+2\sqrt{x}+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{x}+1\right)^{2}.
x+9=x+2\sqrt{x}+1
Calculate \sqrt{x} to the power of 2 and get x.
x+9-x=2\sqrt{x}+1
Subtract x from both sides.
9=2\sqrt{x}+1
Combine x and -x to get 0.
2\sqrt{x}+1=9
Swap sides so that all variable terms are on the left hand side.
2\sqrt{x}=9-1
Subtract 1 from both sides.
2\sqrt{x}=8
Subtract 1 from 9 to get 8.
\sqrt{x}=\frac{8}{2}
Divide both sides by 2.
\sqrt{x}=4
Divide 8 by 2 to get 4.
x=16
Square both sides of the equation.
\sqrt{16+9}=\sqrt{16}+1
Substitute 16 for x in the equation \sqrt{x+9}=\sqrt{x}+1.
5=5
Simplify. The value x=16 satisfies the equation.
x=16
Equation \sqrt{x+9}=\sqrt{x}+1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}