Solve for x
x=7
Graph
Share
Copied to clipboard
\sqrt{x+9}=7-\sqrt{x+2}
Subtract \sqrt{x+2} from both sides of the equation.
\left(\sqrt{x+9}\right)^{2}=\left(7-\sqrt{x+2}\right)^{2}
Square both sides of the equation.
x+9=\left(7-\sqrt{x+2}\right)^{2}
Calculate \sqrt{x+9} to the power of 2 and get x+9.
x+9=49-14\sqrt{x+2}+\left(\sqrt{x+2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7-\sqrt{x+2}\right)^{2}.
x+9=49-14\sqrt{x+2}+x+2
Calculate \sqrt{x+2} to the power of 2 and get x+2.
x+9=51-14\sqrt{x+2}+x
Add 49 and 2 to get 51.
x+9+14\sqrt{x+2}=51+x
Add 14\sqrt{x+2} to both sides.
x+9+14\sqrt{x+2}-x=51
Subtract x from both sides.
9+14\sqrt{x+2}=51
Combine x and -x to get 0.
14\sqrt{x+2}=51-9
Subtract 9 from both sides.
14\sqrt{x+2}=42
Subtract 9 from 51 to get 42.
\sqrt{x+2}=\frac{42}{14}
Divide both sides by 14.
\sqrt{x+2}=3
Divide 42 by 14 to get 3.
x+2=9
Square both sides of the equation.
x+2-2=9-2
Subtract 2 from both sides of the equation.
x=9-2
Subtracting 2 from itself leaves 0.
x=7
Subtract 2 from 9.
\sqrt{7+9}+\sqrt{7+2}=7
Substitute 7 for x in the equation \sqrt{x+9}+\sqrt{x+2}=7.
7=7
Simplify. The value x=7 satisfies the equation.
x=7
Equation \sqrt{x+9}=-\sqrt{x+2}+7 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}