Solve for x
x=8
Graph
Share
Copied to clipboard
\left(\sqrt{x+8}\right)^{2}=\left(1+\sqrt{x+1}\right)^{2}
Square both sides of the equation.
x+8=\left(1+\sqrt{x+1}\right)^{2}
Calculate \sqrt{x+8} to the power of 2 and get x+8.
x+8=1+2\sqrt{x+1}+\left(\sqrt{x+1}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{x+1}\right)^{2}.
x+8=1+2\sqrt{x+1}+x+1
Calculate \sqrt{x+1} to the power of 2 and get x+1.
x+8=2+2\sqrt{x+1}+x
Add 1 and 1 to get 2.
x+8-2\sqrt{x+1}=2+x
Subtract 2\sqrt{x+1} from both sides.
x+8-2\sqrt{x+1}-x=2
Subtract x from both sides.
8-2\sqrt{x+1}=2
Combine x and -x to get 0.
-2\sqrt{x+1}=2-8
Subtract 8 from both sides.
-2\sqrt{x+1}=-6
Subtract 8 from 2 to get -6.
\sqrt{x+1}=\frac{-6}{-2}
Divide both sides by -2.
\sqrt{x+1}=3
Divide -6 by -2 to get 3.
x+1=9
Square both sides of the equation.
x+1-1=9-1
Subtract 1 from both sides of the equation.
x=9-1
Subtracting 1 from itself leaves 0.
x=8
Subtract 1 from 9.
\sqrt{8+8}=1+\sqrt{8+1}
Substitute 8 for x in the equation \sqrt{x+8}=1+\sqrt{x+1}.
4=4
Simplify. The value x=8 satisfies the equation.
x=8
Equation \sqrt{x+8}=\sqrt{x+1}+1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}