Solve for x
x=2
Graph
Share
Copied to clipboard
\left(\sqrt{x+7}+\sqrt{x+2}\right)^{2}=\left(\sqrt{6x+13}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x+7}\right)^{2}+2\sqrt{x+7}\sqrt{x+2}+\left(\sqrt{x+2}\right)^{2}=\left(\sqrt{6x+13}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{x+7}+\sqrt{x+2}\right)^{2}.
x+7+2\sqrt{x+7}\sqrt{x+2}+\left(\sqrt{x+2}\right)^{2}=\left(\sqrt{6x+13}\right)^{2}
Calculate \sqrt{x+7} to the power of 2 and get x+7.
x+7+2\sqrt{x+7}\sqrt{x+2}+x+2=\left(\sqrt{6x+13}\right)^{2}
Calculate \sqrt{x+2} to the power of 2 and get x+2.
2x+7+2\sqrt{x+7}\sqrt{x+2}+2=\left(\sqrt{6x+13}\right)^{2}
Combine x and x to get 2x.
2x+9+2\sqrt{x+7}\sqrt{x+2}=\left(\sqrt{6x+13}\right)^{2}
Add 7 and 2 to get 9.
2x+9+2\sqrt{x+7}\sqrt{x+2}=6x+13
Calculate \sqrt{6x+13} to the power of 2 and get 6x+13.
2\sqrt{x+7}\sqrt{x+2}=6x+13-\left(2x+9\right)
Subtract 2x+9 from both sides of the equation.
2\sqrt{x+7}\sqrt{x+2}=6x+13-2x-9
To find the opposite of 2x+9, find the opposite of each term.
2\sqrt{x+7}\sqrt{x+2}=4x+13-9
Combine 6x and -2x to get 4x.
2\sqrt{x+7}\sqrt{x+2}=4x+4
Subtract 9 from 13 to get 4.
\left(2\sqrt{x+7}\sqrt{x+2}\right)^{2}=\left(4x+4\right)^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{x+7}\right)^{2}\left(\sqrt{x+2}\right)^{2}=\left(4x+4\right)^{2}
Expand \left(2\sqrt{x+7}\sqrt{x+2}\right)^{2}.
4\left(\sqrt{x+7}\right)^{2}\left(\sqrt{x+2}\right)^{2}=\left(4x+4\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\left(x+7\right)\left(\sqrt{x+2}\right)^{2}=\left(4x+4\right)^{2}
Calculate \sqrt{x+7} to the power of 2 and get x+7.
4\left(x+7\right)\left(x+2\right)=\left(4x+4\right)^{2}
Calculate \sqrt{x+2} to the power of 2 and get x+2.
\left(4x+28\right)\left(x+2\right)=\left(4x+4\right)^{2}
Use the distributive property to multiply 4 by x+7.
4x^{2}+8x+28x+56=\left(4x+4\right)^{2}
Apply the distributive property by multiplying each term of 4x+28 by each term of x+2.
4x^{2}+36x+56=\left(4x+4\right)^{2}
Combine 8x and 28x to get 36x.
4x^{2}+36x+56=16x^{2}+32x+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4x+4\right)^{2}.
4x^{2}+36x+56-16x^{2}=32x+16
Subtract 16x^{2} from both sides.
-12x^{2}+36x+56=32x+16
Combine 4x^{2} and -16x^{2} to get -12x^{2}.
-12x^{2}+36x+56-32x=16
Subtract 32x from both sides.
-12x^{2}+4x+56=16
Combine 36x and -32x to get 4x.
-12x^{2}+4x+56-16=0
Subtract 16 from both sides.
-12x^{2}+4x+40=0
Subtract 16 from 56 to get 40.
-3x^{2}+x+10=0
Divide both sides by 4.
a+b=1 ab=-3\times 10=-30
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -3x^{2}+ax+bx+10. To find a and b, set up a system to be solved.
-1,30 -2,15 -3,10 -5,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -30.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Calculate the sum for each pair.
a=6 b=-5
The solution is the pair that gives sum 1.
\left(-3x^{2}+6x\right)+\left(-5x+10\right)
Rewrite -3x^{2}+x+10 as \left(-3x^{2}+6x\right)+\left(-5x+10\right).
3x\left(-x+2\right)+5\left(-x+2\right)
Factor out 3x in the first and 5 in the second group.
\left(-x+2\right)\left(3x+5\right)
Factor out common term -x+2 by using distributive property.
x=2 x=-\frac{5}{3}
To find equation solutions, solve -x+2=0 and 3x+5=0.
\sqrt{2+7}+\sqrt{2+2}=\sqrt{6\times 2+13}
Substitute 2 for x in the equation \sqrt{x+7}+\sqrt{x+2}=\sqrt{6x+13}.
5=5
Simplify. The value x=2 satisfies the equation.
\sqrt{-\frac{5}{3}+7}+\sqrt{-\frac{5}{3}+2}=\sqrt{6\left(-\frac{5}{3}\right)+13}
Substitute -\frac{5}{3} for x in the equation \sqrt{x+7}+\sqrt{x+2}=\sqrt{6x+13}.
\frac{5}{3}\times 3^{\frac{1}{2}}=3^{\frac{1}{2}}
Simplify. The value x=-\frac{5}{3} does not satisfy the equation.
\sqrt{2+7}+\sqrt{2+2}=\sqrt{6\times 2+13}
Substitute 2 for x in the equation \sqrt{x+7}+\sqrt{x+2}=\sqrt{6x+13}.
5=5
Simplify. The value x=2 satisfies the equation.
x=2
Equation \sqrt{x+2}+\sqrt{x+7}=\sqrt{6x+13} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}