Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{x+6}=2\sqrt{3}+\sqrt{x-6}
Subtract -\sqrt{x-6} from both sides of the equation.
\left(\sqrt{x+6}\right)^{2}=\left(2\sqrt{3}+\sqrt{x-6}\right)^{2}
Square both sides of the equation.
x+6=\left(2\sqrt{3}+\sqrt{x-6}\right)^{2}
Calculate \sqrt{x+6} to the power of 2 and get x+6.
x+6=4\left(\sqrt{3}\right)^{2}+4\sqrt{3}\sqrt{x-6}+\left(\sqrt{x-6}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2\sqrt{3}+\sqrt{x-6}\right)^{2}.
x+6=4\times 3+4\sqrt{3}\sqrt{x-6}+\left(\sqrt{x-6}\right)^{2}
The square of \sqrt{3} is 3.
x+6=12+4\sqrt{3}\sqrt{x-6}+\left(\sqrt{x-6}\right)^{2}
Multiply 4 and 3 to get 12.
x+6=12+4\sqrt{3}\sqrt{x-6}+x-6
Calculate \sqrt{x-6} to the power of 2 and get x-6.
x+6=6+4\sqrt{3}\sqrt{x-6}+x
Subtract 6 from 12 to get 6.
x+6-4\sqrt{3}\sqrt{x-6}=6+x
Subtract 4\sqrt{3}\sqrt{x-6} from both sides.
x+6-4\sqrt{3}\sqrt{x-6}-x=6
Subtract x from both sides.
6-4\sqrt{3}\sqrt{x-6}=6
Combine x and -x to get 0.
-4\sqrt{3}\sqrt{x-6}=6-6
Subtract 6 from both sides.
-4\sqrt{3}\sqrt{x-6}=0
Subtract 6 from 6 to get 0.
\frac{\left(-4\sqrt{3}\right)\sqrt{x-6}}{-4\sqrt{3}}=\frac{0}{-4\sqrt{3}}
Divide both sides by -4\sqrt{3}.
\sqrt{x-6}=\frac{0}{-4\sqrt{3}}
Dividing by -4\sqrt{3} undoes the multiplication by -4\sqrt{3}.
\sqrt{x-6}=0
Divide 0 by -4\sqrt{3}.
x-6=0
Square both sides of the equation.
x-6-\left(-6\right)=-\left(-6\right)
Add 6 to both sides of the equation.
x=-\left(-6\right)
Subtracting -6 from itself leaves 0.
x=6
Subtract -6 from 0.
\sqrt{6+6}-\sqrt{6-6}=2\sqrt{3}
Substitute 6 for x in the equation \sqrt{x+6}-\sqrt{x-6}=2\sqrt{3}.
2\times 3^{\frac{1}{2}}=2\times 3^{\frac{1}{2}}
Simplify. The value x=6 satisfies the equation.
x=6
Equation \sqrt{x+6}=\sqrt{x-6}+2\sqrt{3} has a unique solution.