Solve for x
x=3
Graph
Share
Copied to clipboard
\left(\sqrt{x+6}\right)^{2}=\left(5-\sqrt{x+1}\right)^{2}
Square both sides of the equation.
x+6=\left(5-\sqrt{x+1}\right)^{2}
Calculate \sqrt{x+6} to the power of 2 and get x+6.
x+6=25-10\sqrt{x+1}+\left(\sqrt{x+1}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-\sqrt{x+1}\right)^{2}.
x+6=25-10\sqrt{x+1}+x+1
Calculate \sqrt{x+1} to the power of 2 and get x+1.
x+6=26-10\sqrt{x+1}+x
Add 25 and 1 to get 26.
x+6+10\sqrt{x+1}=26+x
Add 10\sqrt{x+1} to both sides.
x+6+10\sqrt{x+1}-x=26
Subtract x from both sides.
6+10\sqrt{x+1}=26
Combine x and -x to get 0.
10\sqrt{x+1}=26-6
Subtract 6 from both sides.
10\sqrt{x+1}=20
Subtract 6 from 26 to get 20.
\sqrt{x+1}=\frac{20}{10}
Divide both sides by 10.
\sqrt{x+1}=2
Divide 20 by 10 to get 2.
x+1=4
Square both sides of the equation.
x+1-1=4-1
Subtract 1 from both sides of the equation.
x=4-1
Subtracting 1 from itself leaves 0.
x=3
Subtract 1 from 4.
\sqrt{3+6}=5-\sqrt{3+1}
Substitute 3 for x in the equation \sqrt{x+6}=5-\sqrt{x+1}.
3=3
Simplify. The value x=3 satisfies the equation.
x=3
Equation \sqrt{x+6}=-\sqrt{x+1}+5 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}