Solve for x
x = \frac{9 - \sqrt{37}}{2} \approx 1.458618735
Graph
Share
Copied to clipboard
\sqrt{x+5}=1+\sqrt{3x-2}
Subtract -\sqrt{3x-2} from both sides of the equation.
\left(\sqrt{x+5}\right)^{2}=\left(1+\sqrt{3x-2}\right)^{2}
Square both sides of the equation.
x+5=\left(1+\sqrt{3x-2}\right)^{2}
Calculate \sqrt{x+5} to the power of 2 and get x+5.
x+5=1+2\sqrt{3x-2}+\left(\sqrt{3x-2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{3x-2}\right)^{2}.
x+5=1+2\sqrt{3x-2}+3x-2
Calculate \sqrt{3x-2} to the power of 2 and get 3x-2.
x+5=-1+2\sqrt{3x-2}+3x
Subtract 2 from 1 to get -1.
x+5-\left(-1+3x\right)=2\sqrt{3x-2}
Subtract -1+3x from both sides of the equation.
x+5+1-3x=2\sqrt{3x-2}
To find the opposite of -1+3x, find the opposite of each term.
x+6-3x=2\sqrt{3x-2}
Add 5 and 1 to get 6.
-2x+6=2\sqrt{3x-2}
Combine x and -3x to get -2x.
\left(-2x+6\right)^{2}=\left(2\sqrt{3x-2}\right)^{2}
Square both sides of the equation.
4x^{2}-24x+36=\left(2\sqrt{3x-2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-2x+6\right)^{2}.
4x^{2}-24x+36=2^{2}\left(\sqrt{3x-2}\right)^{2}
Expand \left(2\sqrt{3x-2}\right)^{2}.
4x^{2}-24x+36=4\left(\sqrt{3x-2}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4x^{2}-24x+36=4\left(3x-2\right)
Calculate \sqrt{3x-2} to the power of 2 and get 3x-2.
4x^{2}-24x+36=12x-8
Use the distributive property to multiply 4 by 3x-2.
4x^{2}-24x+36-12x=-8
Subtract 12x from both sides.
4x^{2}-36x+36=-8
Combine -24x and -12x to get -36x.
4x^{2}-36x+36+8=0
Add 8 to both sides.
4x^{2}-36x+44=0
Add 36 and 8 to get 44.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 4\times 44}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -36 for b, and 44 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-36\right)±\sqrt{1296-4\times 4\times 44}}{2\times 4}
Square -36.
x=\frac{-\left(-36\right)±\sqrt{1296-16\times 44}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-36\right)±\sqrt{1296-704}}{2\times 4}
Multiply -16 times 44.
x=\frac{-\left(-36\right)±\sqrt{592}}{2\times 4}
Add 1296 to -704.
x=\frac{-\left(-36\right)±4\sqrt{37}}{2\times 4}
Take the square root of 592.
x=\frac{36±4\sqrt{37}}{2\times 4}
The opposite of -36 is 36.
x=\frac{36±4\sqrt{37}}{8}
Multiply 2 times 4.
x=\frac{4\sqrt{37}+36}{8}
Now solve the equation x=\frac{36±4\sqrt{37}}{8} when ± is plus. Add 36 to 4\sqrt{37}.
x=\frac{\sqrt{37}+9}{2}
Divide 36+4\sqrt{37} by 8.
x=\frac{36-4\sqrt{37}}{8}
Now solve the equation x=\frac{36±4\sqrt{37}}{8} when ± is minus. Subtract 4\sqrt{37} from 36.
x=\frac{9-\sqrt{37}}{2}
Divide 36-4\sqrt{37} by 8.
x=\frac{\sqrt{37}+9}{2} x=\frac{9-\sqrt{37}}{2}
The equation is now solved.
\sqrt{\frac{\sqrt{37}+9}{2}+5}-\sqrt{3\times \frac{\sqrt{37}+9}{2}-2}=1
Substitute \frac{\sqrt{37}+9}{2} for x in the equation \sqrt{x+5}-\sqrt{3x-2}=1.
-1=1
Simplify. The value x=\frac{\sqrt{37}+9}{2} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{\frac{9-\sqrt{37}}{2}+5}-\sqrt{3\times \frac{9-\sqrt{37}}{2}-2}=1
Substitute \frac{9-\sqrt{37}}{2} for x in the equation \sqrt{x+5}-\sqrt{3x-2}=1.
1=1
Simplify. The value x=\frac{9-\sqrt{37}}{2} satisfies the equation.
x=\frac{9-\sqrt{37}}{2}
Equation \sqrt{x+5}=\sqrt{3x-2}+1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}